找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cartan Geometries and their Symmetries; A Lie Algebroid Appr Mike Crampin,David Saunders Book 2016 Atlantis Press and the author(s) 2016 Ca

[復(fù)制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 04:52:52 | 只看該作者
22#
發(fā)表于 2025-3-25 07:39:54 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:33 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:22 | 只看該作者
Mike Crampin,David SaundersExpounds a new approach to the theory of Cartan connections as path connections on a certain class of Lie groupoids, or as infinitesimal connections on corresponding Lie algebroids.It contains a compr
25#
發(fā)表于 2025-3-25 22:58:43 | 只看該作者
Atlantis Studies in Variational Geometryhttp://image.papertrans.cn/c/image/222186.jpg
26#
發(fā)表于 2025-3-26 00:15:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:14 | 只看該作者
Lecture Notes in Computer Sciencere both finite and infinitesimal symmetries may be considered, the former being diffeomorphisms with a property such as preserving geodesics, horizontal lifts or something similar, and the latter being vector fields whose flows have the same property.
28#
發(fā)表于 2025-3-26 09:31:17 | 只看該作者
Waldemar Adam,Lazaros Hadjiarapoglou (finite) Cartan geometry as a special kind of fibre-morphism groupoid with a path connection, and use this to motivate a detailed investigation of infinitesimal Cartan geometries given in terms of Lie algebroids. In fact our main concern in subsequent chapters will be with the infinitesimal geometr
29#
發(fā)表于 2025-3-26 15:55:03 | 只看該作者
30#
發(fā)表于 2025-3-26 18:43:53 | 只看該作者
Hideaki Okamura,Yutaka Ishikawa,Mario Tokoron in Chap.?., but which is based on the construction (described in Chap.?.) of a bundle over M whose standard fibre is projective space of dimension dim M, together with the groupoid of projective maps between its fibres.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武川县| 潼关县| 济源市| 治多县| 嘉善县| 石楼县| 平利县| 三门县| 萨嘎县| 兰考县| 平舆县| 蓬安县| 大理市| 阳朔县| 平和县| 扶余县| 佛坪县| 道孚县| 会东县| 灵川县| 资溪县| 昌宁县| 娄底市| 襄樊市| 大庆市| 邢台县| 庆城县| 涡阳县| 个旧市| 东辽县| 乐东| 大邑县| 乌鲁木齐县| 江口县| 射阳县| 林周县| 广德县| 洪江市| 梧州市| 玉山县| 周宁县|