找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators; Albrecht B?ttcher,Yuri I. Karlovich Book 1997 Springer Basel AG 1997 Singula

[復(fù)制鏈接]
樓主: Flange
21#
發(fā)表于 2025-3-25 06:07:03 | 只看該作者
978-3-0348-9828-7Springer Basel AG 1997
22#
發(fā)表于 2025-3-25 11:26:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:06:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:20:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:55:45 | 只看該作者
https://doi.org/10.1007/978-3-642-28531-8xamples. The “oscillation” of a Carleson curve Γ at a point . ∈ Γ may be measured by its Seifullayev bounds ..and ..as well as its spirality indices .. and ..The definition of the spirality indices requires the notion of the W transform and some facts from the theory of submultiplicative functions.
26#
發(fā)表于 2025-3-26 00:26:00 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:13 | 只看該作者
28#
發(fā)表于 2025-3-26 10:59:56 | 只看該作者
AgInSe2: extinction coefficient,on ..(Γ,.). There are now various proofs of this deep result, and the proof given in the following is certainly not the most elegant proof. However, it is reasonably self-contained and it contains several details which are usually disposed of as “standard” and are therefore omitted in the advanced t
29#
發(fā)表于 2025-3-26 15:06:51 | 只看該作者
AgInSe2: extinction coefficient,sily that S. = ., and hence .:= . is a bounded projection on ..(Γ, ω). The image of ., i.e. the space ...(Γ, ω):= ..(Γ, ω), is therefore a closed subspace of ..(Γ, ω), which is called the pth Hardy space of Γ and ω. If a ∈ ..(Γ), then the operator of multiplication by a is obviously bounded on ..(Γ,
30#
發(fā)表于 2025-3-26 18:32:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投县| 赫章县| 石城县| 昂仁县| 耿马| 襄垣县| 桃园市| 库伦旗| 南华县| 蓬莱市| 乌兰察布市| 耿马| 衡阳县| 太和县| 翁牛特旗| 鹤山市| 连山| 日照市| 南岸区| 万荣县| 文成县| 宁南县| 天津市| 阿鲁科尔沁旗| 肥东县| 阜平县| 老河口市| 株洲市| 耒阳市| 梅州市| 碌曲县| 黄浦区| 永顺县| 揭东县| 龙泉市| 东至县| 大同市| 大洼县| 闻喜县| 化德县| 友谊县|