找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Uniqueness and Control Theory; Ferruccio Colombini,Claude Zuily Book 2001 Springer Science+Business

[復(fù)制鏈接]
樓主: 哄笑
41#
發(fā)表于 2025-3-28 18:06:50 | 只看該作者
42#
發(fā)表于 2025-3-28 19:01:19 | 只看該作者
Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity,ll of ?...The fundamental difference between our case and the case of the scalar laplacian (see Burq [.]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.
43#
發(fā)表于 2025-3-29 02:58:41 | 只看該作者
44#
發(fā)表于 2025-3-29 04:59:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:19:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
https://doi.org/10.1007/978-3-642-23415-6operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
47#
發(fā)表于 2025-3-29 18:10:41 | 只看該作者
Some Necessary Conditions for Hyperbolic Systems,tiple characteristic. Our purpose is to find some necessary conditions which correspond to the Ivrii-Petkov conditions for systems. In [.], we obtained a necessary condition in this direction. Here we continue this study.
48#
發(fā)表于 2025-3-29 19:44:53 | 只看該作者
Unique Continuation from Sets of Positive Measure,operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
49#
發(fā)表于 2025-3-30 00:58:54 | 只看該作者
Strong Uniqueness for Fourth Order Elliptic Differential Operators,with complex Lipschitz continuous coefficients and also that .(.) = ..(.) ..(.) where ..(.) and ..(.) are two second order differential elliptic operators such that ..(O, .) = ..(.) = ?Δ. The proof of the theorem mentioned above uses the classical Carleman method.
50#
發(fā)表于 2025-3-30 07:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
界首市| 灵璧县| 化隆| 杭锦后旗| 浦江县| 洮南市| 佛学| 万源市| 合川市| 德清县| 灌南县| 顺平县| 冕宁县| 泉州市| 肃南| 建宁县| 张家口市| 横山县| 延吉市| 阿坝| 鄱阳县| 屯留县| 肇源县| 桃园市| 武城县| 桐庐县| 星座| 阿拉善右旗| 竹北市| 扬中市| 大埔县| 梁平县| 益阳市| 蓬安县| 太和县| 兴安县| 玉田县| 博爱县| 灯塔市| 新津县| 富蕴县|