找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Uniqueness and Control Theory; Ferruccio Colombini,Claude Zuily Book 2001 Springer Science+Business

[復(fù)制鏈接]
樓主: 哄笑
41#
發(fā)表于 2025-3-28 18:06:50 | 只看該作者
42#
發(fā)表于 2025-3-28 19:01:19 | 只看該作者
Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity,ll of ?...The fundamental difference between our case and the case of the scalar laplacian (see Burq [.]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.
43#
發(fā)表于 2025-3-29 02:58:41 | 只看該作者
44#
發(fā)表于 2025-3-29 04:59:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:19:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
https://doi.org/10.1007/978-3-642-23415-6operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
47#
發(fā)表于 2025-3-29 18:10:41 | 只看該作者
Some Necessary Conditions for Hyperbolic Systems,tiple characteristic. Our purpose is to find some necessary conditions which correspond to the Ivrii-Petkov conditions for systems. In [.], we obtained a necessary condition in this direction. Here we continue this study.
48#
發(fā)表于 2025-3-29 19:44:53 | 只看該作者
Unique Continuation from Sets of Positive Measure,operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
49#
發(fā)表于 2025-3-30 00:58:54 | 只看該作者
Strong Uniqueness for Fourth Order Elliptic Differential Operators,with complex Lipschitz continuous coefficients and also that .(.) = ..(.) ..(.) where ..(.) and ..(.) are two second order differential elliptic operators such that ..(O, .) = ..(.) = ?Δ. The proof of the theorem mentioned above uses the classical Carleman method.
50#
發(fā)表于 2025-3-30 07:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
密山市| 东城区| 新化县| 文化| 泾川县| 大丰市| 酒泉市| 鹿泉市| 许昌市| 香格里拉县| 伊金霍洛旗| 淮北市| 雅江县| 大同县| 义乌市| 溆浦县| 灵宝市| 炎陵县| 南丹县| 凯里市| 贵南县| 调兵山市| 监利县| 东兴市| 安溪县| 稻城县| 镇沅| 镇宁| 油尖旺区| 抚远县| 昌图县| 闸北区| 东辽县| 肇东市| 合水县| 汉中市| 安多县| 洪江市| 沂源县| 舒城县| 社会|