找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Uniqueness and Control Theory; Ferruccio Colombini,Claude Zuily Book 2001 Springer Science+Business

[復(fù)制鏈接]
樓主: 哄笑
41#
發(fā)表于 2025-3-28 18:06:50 | 只看該作者
42#
發(fā)表于 2025-3-28 19:01:19 | 只看該作者
Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity,ll of ?...The fundamental difference between our case and the case of the scalar laplacian (see Burq [.]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.
43#
發(fā)表于 2025-3-29 02:58:41 | 只看該作者
44#
發(fā)表于 2025-3-29 04:59:55 | 只看該作者
45#
發(fā)表于 2025-3-29 08:19:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
https://doi.org/10.1007/978-3-642-23415-6operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
47#
發(fā)表于 2025-3-29 18:10:41 | 只看該作者
Some Necessary Conditions for Hyperbolic Systems,tiple characteristic. Our purpose is to find some necessary conditions which correspond to the Ivrii-Petkov conditions for systems. In [.], we obtained a necessary condition in this direction. Here we continue this study.
48#
發(fā)表于 2025-3-29 19:44:53 | 只看該作者
Unique Continuation from Sets of Positive Measure,operty (s.u.c.p) if any solution . is identically zero whenever it vanishes of infinite order at a point of Ω. We recall that a function. is said to vanish of infinite order at a point .. (or that . is flat at ..) if for all . > 0,
49#
發(fā)表于 2025-3-30 00:58:54 | 只看該作者
Strong Uniqueness for Fourth Order Elliptic Differential Operators,with complex Lipschitz continuous coefficients and also that .(.) = ..(.) ..(.) where ..(.) and ..(.) are two second order differential elliptic operators such that ..(O, .) = ..(.) = ?Δ. The proof of the theorem mentioned above uses the classical Carleman method.
50#
發(fā)表于 2025-3-30 07:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社会| 廉江市| 托克逊县| 曲靖市| 东阿县| 伽师县| 周口市| 揭西县| 鹤山市| 罗田县| 常宁市| 武冈市| 阿城市| 明光市| 双辽市| 新邵县| 陆河县| 边坝县| 巴林右旗| 开平市| 赤水市| 筠连县| 浠水县| 闻喜县| 定结县| 凤翔县| 青阳县| 惠安县| 星座| 安溪县| 长顺县| 阿尔山市| 内乡县| 绥中县| 门源| 湖南省| 灵台县| 津南区| 甘洛县| 吕梁市| 黎城县|