找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems; Mourad Bellassoued,Masahiro Yamamoto Book 2017 Springer Ja

[復(fù)制鏈接]
樓主: Annihilate
11#
發(fā)表于 2025-3-23 12:32:56 | 只看該作者
AgBr: phase transitions, , phase diagram,In Chap.?., we proved Carleman estimates under Assumptions (A.1)–(A.3). The purpose of this chapter is to give a convenient condition for verifying (A.1).
12#
發(fā)表于 2025-3-23 17:10:11 | 只看該作者
https://doi.org/10.1007/978-3-642-14148-5In this chapter, we establish Carleman estimates for a thermoelastic plate system and a thermoelastic system with residual stress as applications of the Carleman estimate in Chap.?..
13#
發(fā)表于 2025-3-23 21:02:22 | 只看該作者
14#
發(fā)表于 2025-3-24 01:07:09 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:35 | 只看該作者
16#
發(fā)表于 2025-3-24 09:04:44 | 只看該作者
Basic Tools of Riemannian Geometry,In this chapter, we collect some material concerning Riemannian manifolds equipped with metric structures, and our choice of material presented is made for the applications to Carleman estimates and inverse problems in the succeeding chapters.
17#
發(fā)表于 2025-3-24 12:32:41 | 只看該作者
Well-Posedness and Regularity for the Wave Equation with Variable Coefficients,In this chapter, we will consider the initial-boundary value problem for the wave equation on a manifold with boundary. The initial-boundary value problem corresponds to the elliptic operator . introduced in Chap.?.. We will develop a standard approach to prove the existence and uniqueness of solutions and to study their regularity proprieties.
18#
發(fā)表于 2025-3-24 18:27:48 | 只看該作者
Realization of the Convexity of the Weight Function,In Chap.?., we proved Carleman estimates under Assumptions (A.1)–(A.3). The purpose of this chapter is to give a convenient condition for verifying (A.1).
19#
發(fā)表于 2025-3-24 19:12:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:52:43 | 只看該作者
Inverse Heat Source Problem for the Thermoelasticity System,Using arguments similar to those presented in Chap.?., we can apply the Carleman estimates obtained in Chap.?. to the corrresponding inverse problems of determining coefficients and source terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会同县| 青岛市| 衡水市| 通州区| 岳西县| 南溪县| 威海市| 安康市| 平江县| 柞水县| 开原市| 浙江省| 五原县| 嘉定区| 永嘉县| 大同市| 扬中市| 广德县| 呼伦贝尔市| 凤山县| 昭通市| 罗山县| 鄱阳县| 山阴县| 汕头市| 泰顺县| 德格县| 高密市| 温州市| 海南省| 平度市| 九寨沟县| 侯马市| 桂林市| 龙南县| 晴隆县| 萨嘎县| 榆社县| 维西| 招远市| 弋阳县|