找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems; Mourad Bellassoued,Masahiro Yamamoto Book 2017 Springer Ja

[復(fù)制鏈接]
樓主: Annihilate
11#
發(fā)表于 2025-3-23 12:32:56 | 只看該作者
AgBr: phase transitions, , phase diagram,In Chap.?., we proved Carleman estimates under Assumptions (A.1)–(A.3). The purpose of this chapter is to give a convenient condition for verifying (A.1).
12#
發(fā)表于 2025-3-23 17:10:11 | 只看該作者
https://doi.org/10.1007/978-3-642-14148-5In this chapter, we establish Carleman estimates for a thermoelastic plate system and a thermoelastic system with residual stress as applications of the Carleman estimate in Chap.?..
13#
發(fā)表于 2025-3-23 21:02:22 | 只看該作者
14#
發(fā)表于 2025-3-24 01:07:09 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:35 | 只看該作者
16#
發(fā)表于 2025-3-24 09:04:44 | 只看該作者
Basic Tools of Riemannian Geometry,In this chapter, we collect some material concerning Riemannian manifolds equipped with metric structures, and our choice of material presented is made for the applications to Carleman estimates and inverse problems in the succeeding chapters.
17#
發(fā)表于 2025-3-24 12:32:41 | 只看該作者
Well-Posedness and Regularity for the Wave Equation with Variable Coefficients,In this chapter, we will consider the initial-boundary value problem for the wave equation on a manifold with boundary. The initial-boundary value problem corresponds to the elliptic operator . introduced in Chap.?.. We will develop a standard approach to prove the existence and uniqueness of solutions and to study their regularity proprieties.
18#
發(fā)表于 2025-3-24 18:27:48 | 只看該作者
Realization of the Convexity of the Weight Function,In Chap.?., we proved Carleman estimates under Assumptions (A.1)–(A.3). The purpose of this chapter is to give a convenient condition for verifying (A.1).
19#
發(fā)表于 2025-3-24 19:12:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:52:43 | 只看該作者
Inverse Heat Source Problem for the Thermoelasticity System,Using arguments similar to those presented in Chap.?., we can apply the Carleman estimates obtained in Chap.?. to the corrresponding inverse problems of determining coefficients and source terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高密市| 共和县| 阿瓦提县| 清苑县| 通江县| 景洪市| 长乐市| 保康县| 乡城县| 普陀区| 卓尼县| 兴仁县| 博白县| 金坛市| 稻城县| 丁青县| 凤阳县| 从江县| 双鸭山市| 岳普湖县| 徐水县| 启东市| 芜湖市| 水富县| 黑山县| 琼海市| 综艺| 洮南市| 原阳县| 彭阳县| 肇州县| 星子县| 尼勒克县| 成安县| 东城区| 黑龙江省| 同江市| 沿河| 游戏| 介休市| 呼玛县|