找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinalities of Fuzzy Sets; Maciej Wygralak Book 2003 Springer-Verlag Berlin Heidelberg 2003 Cardinality of Fuzzy Sets.Computer.Fuzzy.Fuz

[復(fù)制鏈接]
樓主: FETID
21#
發(fā)表于 2025-3-25 06:53:12 | 只看該作者
1434-9922 stematic presentation equipped with many examplesCounting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite s
22#
發(fā)表于 2025-3-25 09:09:15 | 只看該作者
23#
發(fā)表于 2025-3-25 14:49:18 | 只看該作者
Fuzzy Sets,er, their membership in that collection is graduated. This feature implies that the logical basis of fuzzy sets must be many-valued logic, i.e. logic allowing intermediate logical values lying between 0 (false) and 1 (true). The concept of a fuzzy set and fundamentals of many-valued sentential calcu
24#
發(fā)表于 2025-3-25 17:23:29 | 只看該作者
Scalar Cardinalities of Fuzzy Sets,es is the starting point of our study. We like to investigate their properties, including the valuation property, the cartesian product rule and the complementarity rule. The question of the simultaneous fulfilment of these properties will also be discussed.
25#
發(fā)表于 2025-3-25 23:12:24 | 只看該作者
Generalized Cardinals with Triangular Norms,uzzy sets with triangular operations. We shall use the notation and terminology established in that section as well as in Chapter 1. Among other questions, the following key issues will be discussed: equipotency of fuzzy sets, ordering relations for their generalized cardinal numbers, and arithmetic
26#
發(fā)表于 2025-3-26 01:21:48 | 只看該作者
7樓
27#
發(fā)表于 2025-3-26 08:18:34 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 11:13:26 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 14:15:45 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 20:08:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尤溪县| 子长县| 施秉县| 睢宁县| 偃师市| 惠州市| 莱西市| 成都市| 镇安县| 台安县| 麻江县| 拉萨市| 改则县| 延川县| 德保县| 彭阳县| 两当县| 维西| 永吉县| 苏尼特左旗| 元谋县| 城步| 吉隆县| 郑州市| 康平县| 多伦县| 通州区| 玉溪市| 渑池县| 农安县| 成都市| 吕梁市| 武宣县| 平陆县| 乐东| 搜索| 平乐县| 普兰县| 图木舒克市| 焦作市| 四川省|