找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinalities of Fuzzy Sets; Maciej Wygralak Book 2003 Springer-Verlag Berlin Heidelberg 2003 Cardinality of Fuzzy Sets.Computer.Fuzzy.Fuz

[復(fù)制鏈接]
樓主: FETID
21#
發(fā)表于 2025-3-25 06:53:12 | 只看該作者
1434-9922 stematic presentation equipped with many examplesCounting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite s
22#
發(fā)表于 2025-3-25 09:09:15 | 只看該作者
23#
發(fā)表于 2025-3-25 14:49:18 | 只看該作者
Fuzzy Sets,er, their membership in that collection is graduated. This feature implies that the logical basis of fuzzy sets must be many-valued logic, i.e. logic allowing intermediate logical values lying between 0 (false) and 1 (true). The concept of a fuzzy set and fundamentals of many-valued sentential calcu
24#
發(fā)表于 2025-3-25 17:23:29 | 只看該作者
Scalar Cardinalities of Fuzzy Sets,es is the starting point of our study. We like to investigate their properties, including the valuation property, the cartesian product rule and the complementarity rule. The question of the simultaneous fulfilment of these properties will also be discussed.
25#
發(fā)表于 2025-3-25 23:12:24 | 只看該作者
Generalized Cardinals with Triangular Norms,uzzy sets with triangular operations. We shall use the notation and terminology established in that section as well as in Chapter 1. Among other questions, the following key issues will be discussed: equipotency of fuzzy sets, ordering relations for their generalized cardinal numbers, and arithmetic
26#
發(fā)表于 2025-3-26 01:21:48 | 只看該作者
7樓
27#
發(fā)表于 2025-3-26 08:18:34 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 11:13:26 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 14:15:45 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 20:08:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 普定县| 二连浩特市| 黄浦区| 临桂县| 元阳县| 玛多县| 永顺县| 枣庄市| 呼伦贝尔市| 乐亭县| 秭归县| 卢龙县| 阜阳市| 宾阳县| 涡阳县| 尼勒克县| 绥宁县| 沙湾县| 临泉县| 利津县| 内乡县| 安多县| 和龙市| 汶川县| 清水县| 山西省| 扬中市| 武陟县| 宁南县| 靖边县| 共和县| 武川县| 金溪县| 沈丘县| 庐江县| 稷山县| 喀什市| 西贡区| 太谷县| 寿阳县|