找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinalities of Fuzzy Sets; Maciej Wygralak Book 2003 Springer-Verlag Berlin Heidelberg 2003 Cardinality of Fuzzy Sets.Computer.Fuzzy.Fuz

[復(fù)制鏈接]
樓主: FETID
21#
發(fā)表于 2025-3-25 06:53:12 | 只看該作者
1434-9922 stematic presentation equipped with many examplesCounting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite s
22#
發(fā)表于 2025-3-25 09:09:15 | 只看該作者
23#
發(fā)表于 2025-3-25 14:49:18 | 只看該作者
Fuzzy Sets,er, their membership in that collection is graduated. This feature implies that the logical basis of fuzzy sets must be many-valued logic, i.e. logic allowing intermediate logical values lying between 0 (false) and 1 (true). The concept of a fuzzy set and fundamentals of many-valued sentential calcu
24#
發(fā)表于 2025-3-25 17:23:29 | 只看該作者
Scalar Cardinalities of Fuzzy Sets,es is the starting point of our study. We like to investigate their properties, including the valuation property, the cartesian product rule and the complementarity rule. The question of the simultaneous fulfilment of these properties will also be discussed.
25#
發(fā)表于 2025-3-25 23:12:24 | 只看該作者
Generalized Cardinals with Triangular Norms,uzzy sets with triangular operations. We shall use the notation and terminology established in that section as well as in Chapter 1. Among other questions, the following key issues will be discussed: equipotency of fuzzy sets, ordering relations for their generalized cardinal numbers, and arithmetic
26#
發(fā)表于 2025-3-26 01:21:48 | 只看該作者
7樓
27#
發(fā)表于 2025-3-26 08:18:34 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 11:13:26 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 14:15:45 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 20:08:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福建省| 全州县| 临武县| 城步| 镇宁| 漳浦县| 漳州市| 盐边县| 岳池县| 红原县| 上高县| 吐鲁番市| 蕉岭县| 东光县| 富源县| 海口市| 石林| 万安县| 大邑县| 色达县| 巴青县| 英吉沙县| 尚义县| 八宿县| 乌恰县| 东宁县| 仙游县| 阜平县| 虎林市| 永济市| 墨脱县| 麻城市| 高密市| 德安县| 镇赉县| 北川| 定结县| 明光市| 察哈| 兰州市| 无棣县|