找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Quadratic Operators and Processes; Farrukh Mukhamedov,Nasir Ganikhodjaev Book 2015 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: bankrupt
11#
發(fā)表于 2025-3-23 12:25:31 | 只看該作者
Infinite-Dimensional Quadratic Operators, the notion of a Volterra quadratic operator and study its properties. Such operators have been studied by many authors (see for example (Ganikhodzhaev, Acad Sci Sb Math 76(2):489–506, 1993; Volterra, Association Franc. Lyon 1926:96–98, 1927)) in the finite-dimensional setting.
12#
發(fā)表于 2025-3-23 15:03:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:33 | 只看該作者
0075-8434 totic behavior of the dynamical systems they generate.This i.Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dy
14#
發(fā)表于 2025-3-23 23:47:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:09 | 只看該作者
Quantum Quadratic Stochastic Operators on ,, of such a description we provide an example of a positive q.q.s.o.?which is not a Kadison–Schwarz operator. Note that such a characterization is related to the separability condition, which plays an important role in quantum information. We also study the stability of the dynamics of quadratic operators associated with q.q.s.o.s.
16#
發(fā)表于 2025-3-24 09:13:27 | 只看該作者
Quantum Quadratic Stochastic Operators,rator which is called a .. We also study the asymptotically stability of the dynamics of quadratic operators. Moreover, in this chapter we recall the definition of quantum Markov chains and establish that each q.q.s.o.?defines a quantum Markov chain.
17#
發(fā)表于 2025-3-24 10:53:39 | 只看該作者
Quadratic Stochastic Processes,ely determine a q.s.p. This allows us to construct a discrete q.s.p.?from a given q.s.o. Moreover, we provide other constructions of nontrivial examples of q.s.p.s. The weak ergodicity of q.s.p.s is also studied in terms of the marginal processes.
18#
發(fā)表于 2025-3-24 16:39:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:19:38 | 只看該作者
Infinite-Dimensional Quadratic Operators, the notion of a Volterra quadratic operator and study its properties. Such operators have been studied by many authors (see for example (Ganikhodzhaev, Acad Sci Sb Math 76(2):489–506, 1993; Volterra, Association Franc. Lyon 1926:96–98, 1927)) in the finite-dimensional setting.
20#
發(fā)表于 2025-3-24 23:43:23 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/q/image/781437.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垦利县| 辽宁省| 江北区| 历史| 昆明市| 新绛县| 泰来县| 迭部县| 东光县| 墨玉县| 泸西县| 平和县| 怀柔区| 卢氏县| 明星| 平顶山市| 河间市| 长岭县| 通江县| 唐山市| 田林县| 南木林县| 武城县| 毕节市| 读书| 绥化市| 沙坪坝区| 娄底市| 海晏县| 张北县| 锦屏县| 天祝| 永新县| 基隆市| 南漳县| 思南县| 拉萨市| 岳阳市| 道孚县| 息烽县| 曲靖市|