找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Capillary Forces in Microassembly; Modeling, Simulation Pierre Lambert Book 2007 Springer-Verlag US 2007 PED.STEM.Surface science.capillary

[復(fù)制鏈接]
樓主: informed
41#
發(fā)表于 2025-3-28 18:38:05 | 只看該作者
42#
發(fā)表于 2025-3-28 19:21:19 | 只看該作者
43#
發(fā)表于 2025-3-29 01:41:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:22:06 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:37 | 只看該作者
Conclusions of the Theoretical Study of Capillary Forcesng- Dupré, Laplace, Cassie, Wenzel) ruling capillary forces. We have summarized approach and exact methods to compute these forces at equilibrium..For general meniscus shapes, the use of an energy minimization software such as Surface Evolver cannot be avoided, but we have shown how to solve the Lap
46#
發(fā)表于 2025-3-29 13:03:05 | 只看該作者
Introduction The characterization step consists in measuring the inputs of the models, that is, the contact angles, the surface tension, and the volume of liquid. The validation stage is the experimental verification of the proposed models and simulations, mainly done by comparing two possible outputs, i.e., th
47#
發(fā)表于 2025-3-29 18:01:11 | 只看該作者
48#
發(fā)表于 2025-3-29 20:57:18 | 只看該作者
https://doi.org/10.1007/978-3-031-56144-3s and a 1D analytical model derived from the so-called Lucas-Washburn equation. Moreover, high accelerations are usually applied in assembly machines (up to 10.): therefore, it should be checked whether this acceleration can deform the equilibrium meniscus shape or not.
49#
發(fā)表于 2025-3-30 02:41:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:34:15 | 只看該作者
A Series of GSM Positioning Trials,e., a gripper whose geometry conforms with that of the component). The equivalence between this approach and the interfacial energy differentiation has been analytically proved in the case of a prism interacting with a plane.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈尔滨市| 正蓝旗| 乌兰察布市| 稻城县| 仪征市| 惠州市| 勐海县| 峡江县| 和田县| 保定市| 瑞丽市| 凯里市| 万盛区| 诏安县| 汤阴县| 唐海县| 琼结县| 桃园县| 阿克陶县| 威远县| 大姚县| 东乡县| 苏尼特左旗| 太仆寺旗| 嘉义市| 金华市| 吉隆县| 枣强县| 南京市| 离岛区| 长沙县| 庆安县| 奇台县| 保靖县| 苏尼特右旗| 宁海县| 砀山县| 庆安县| 鄂伦春自治旗| 紫金县| 都兰县|