找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Canonical Equational Proofs; Leo Bachmair Book 1991 Birkh?user Boston 1991 equation.function.proof.theorem.verification

[復(fù)制鏈接]
查看: 28894|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:34:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Canonical Equational Proofs
編輯Leo Bachmair
視頻videohttp://file.papertrans.cn/222/221336/221336.mp4
叢書名稱Progress in Theoretical Computer Science
圖書封面Titlebook: Canonical Equational Proofs;  Leo Bachmair Book 1991 Birkh?user Boston 1991 equation.function.proof.theorem.verification
描述Equations occur in many computer applications, such as symbolic compu- tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu- tation of normal forms. We shall study the use of rewrite techniques for reasoning about equations. Reasoning about equations may, for instance, involve deciding whether an equation is a logical consequence of a given set of equational axioms. Convergent rewrite systems are those for which the rewriting process de- fines unique normal forms. They can be thought of as non-deterministic functional programs and provide reasonably efficient decision procedures for the underlying equational theories. The Knuth-Bendix completion method provides a means of testing for convergence and can often be used to con- struct convergent rewrite systems from non-convergent ones. We develop a proof-theoretic framework for studying completion and related rewrite- based
出版日期Book 1991
關(guān)鍵詞equation; function; proof; theorem; verification
版次1
doihttps://doi.org/10.1007/978-1-4684-7118-2
isbn_softcover978-0-8176-3555-8
isbn_ebook978-1-4684-7118-2
copyrightBirkh?user Boston 1991
The information of publication is updating

書目名稱Canonical Equational Proofs影響因子(影響力)




書目名稱Canonical Equational Proofs影響因子(影響力)學(xué)科排名




書目名稱Canonical Equational Proofs網(wǎng)絡(luò)公開(kāi)度




書目名稱Canonical Equational Proofs網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Canonical Equational Proofs被引頻次




書目名稱Canonical Equational Proofs被引頻次學(xué)科排名




書目名稱Canonical Equational Proofs年度引用




書目名稱Canonical Equational Proofs年度引用學(xué)科排名




書目名稱Canonical Equational Proofs讀者反饋




書目名稱Canonical Equational Proofs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:44:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:57 | 只看該作者
Davide Carneiro,Patrícia Velosoogramming languages have been proposed that are based on the paradigm of rewriting (e. g., O’Donnell 1985; Goguen and Meseguer 1986). We shall study the application of rewrite techniques to reasoning about equations.
5#
發(fā)表于 2025-3-22 10:44:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:21:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:18:39 | 只看該作者
Standard Completion,ts of completion. While simplification accounts for the practicality of completion, it also complicates the task of verifying that a procedure is correct (i. e., does in fact produce a convergent set of equations).
8#
發(fā)表于 2025-3-22 21:55:26 | 只看該作者
Book 1991fication, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu- tation of
9#
發(fā)表于 2025-3-23 03:18:44 | 只看該作者
https://doi.org/10.1007/978-1-4684-7118-2equation; function; proof; theorem; verification
10#
發(fā)表于 2025-3-23 08:06:01 | 只看該作者
978-0-8176-3555-8Birkh?user Boston 1991
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荣成市| 新余市| 新民市| 阳曲县| 忻城县| 乌兰察布市| 遂溪县| 崇阳县| 扶风县| 长顺县| 乌鲁木齐县| 咸宁市| 太仆寺旗| 含山县| 高要市| 郑州市| 湘西| 凉城县| 淄博市| 新安县| 贵港市| 安龙县| 博野县| 洛阳市| 张北县| 徐汇区| 邻水| 孙吴县| 台中县| 广州市| 静宁县| 微山县| 思茅市| 河间市| 淳安县| 临泉县| 郎溪县| 吉安县| 三门县| 上饶市| 杭锦后旗|