找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cancer Prevention Through Early Detection; Second International Sharib Ali,Fons van der Sommen,Iris Kolenbrander Conference proceedings 202

[復制鏈接]
樓主: 浮淺
31#
發(fā)表于 2025-3-26 22:43:45 | 只看該作者
https://doi.org/10.1007/978-3-031-45350-2medical image analysis; machine learning; deep learning; lesion classification; lesion detection; lesion
32#
發(fā)表于 2025-3-27 04:48:26 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:14 | 只看該作者
A Deep Attention-Multiple Instance Learning Framework to?Predict Survival of?Soft-Tissue Sarcoma frotted from the Deep Attention-MIL model are used to divide the patients into low/high-risk groups and predict survival time. The framework was trained and validated on a local dataset including 220 patients, then it was used to predict the survival for 48 patients in an external validation dataset. T
34#
發(fā)表于 2025-3-27 10:37:09 | 只看該作者
35#
發(fā)表于 2025-3-27 15:51:57 | 只看該作者
Fully Automated CAD System for?Lung Cancer Detection and?Classification Using 3D Residual U-Net withxtensive experimental results illustrate the effectiveness of our 3D residual U-Net model. These results demonstrate the exceptional detection performance achieved by our proposed model with a sensitivity of 97.65% and an average classification accuracy of 96.37%. Performance analysis demonstrates t
36#
發(fā)表于 2025-3-27 18:39:37 | 只看該作者
37#
發(fā)表于 2025-3-28 01:03:44 | 只看該作者
Multispectral 3D Masked Autoencoders for?Anomaly Detection in?Non-Contrast Enhanced Breast MRI-cancerous images are presented to the model, with the purpose of localizing anomalous tumor regions during test time. We use a public dataset for model development. Performance of the architecture is evaluated in reference to subtraction images created from DCE-MRI. Code has been made publicly avai
38#
發(fā)表于 2025-3-28 02:36:08 | 只看該作者
39#
發(fā)表于 2025-3-28 09:21:08 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:54 | 只看該作者
ColNav: Real-Time Colon Navigation for?Colonoscopyure, providing actionable and comprehensible guidance to un-surveyed areas in real-time, while seamlessly integrating into the physician’s workflow. Through coverage experimental evaluation, we demonstrated that our system resulted in a higher polyp recall (PR) and high inter-rater reliability with
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 18:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昆明市| 苏州市| 收藏| 崇左市| 莆田市| 紫阳县| 东方市| 甘孜| 日喀则市| 金溪县| 南宫市| 射洪县| 民和| 农安县| 怀集县| 千阳县| 林西县| 晋宁县| 临潭县| 达尔| 伊宁市| 滦平县| 离岛区| 宣武区| 孟州市| 民县| 磐安县| 苏尼特左旗| 理塘县| 恩平市| 慈溪市| 吉木乃县| 岑巩县| 周宁县| 滦平县| 项城市| 新平| 句容市| 阿勒泰市| 临澧县| 伊金霍洛旗|