找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cancer Prevention Through Early Detection; Second International Sharib Ali,Fons van der Sommen,Iris Kolenbrander Conference proceedings 202

[復(fù)制鏈接]
樓主: 浮淺
31#
發(fā)表于 2025-3-26 22:43:45 | 只看該作者
https://doi.org/10.1007/978-3-031-45350-2medical image analysis; machine learning; deep learning; lesion classification; lesion detection; lesion
32#
發(fā)表于 2025-3-27 04:48:26 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:14 | 只看該作者
A Deep Attention-Multiple Instance Learning Framework to?Predict Survival of?Soft-Tissue Sarcoma frotted from the Deep Attention-MIL model are used to divide the patients into low/high-risk groups and predict survival time. The framework was trained and validated on a local dataset including 220 patients, then it was used to predict the survival for 48 patients in an external validation dataset. T
34#
發(fā)表于 2025-3-27 10:37:09 | 只看該作者
35#
發(fā)表于 2025-3-27 15:51:57 | 只看該作者
Fully Automated CAD System for?Lung Cancer Detection and?Classification Using 3D Residual U-Net withxtensive experimental results illustrate the effectiveness of our 3D residual U-Net model. These results demonstrate the exceptional detection performance achieved by our proposed model with a sensitivity of 97.65% and an average classification accuracy of 96.37%. Performance analysis demonstrates t
36#
發(fā)表于 2025-3-27 18:39:37 | 只看該作者
37#
發(fā)表于 2025-3-28 01:03:44 | 只看該作者
Multispectral 3D Masked Autoencoders for?Anomaly Detection in?Non-Contrast Enhanced Breast MRI-cancerous images are presented to the model, with the purpose of localizing anomalous tumor regions during test time. We use a public dataset for model development. Performance of the architecture is evaluated in reference to subtraction images created from DCE-MRI. Code has been made publicly avai
38#
發(fā)表于 2025-3-28 02:36:08 | 只看該作者
39#
發(fā)表于 2025-3-28 09:21:08 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:54 | 只看該作者
ColNav: Real-Time Colon Navigation for?Colonoscopyure, providing actionable and comprehensible guidance to un-surveyed areas in real-time, while seamlessly integrating into the physician’s workflow. Through coverage experimental evaluation, we demonstrated that our system resulted in a higher polyp recall (PR) and high inter-rater reliability with
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 阜新| 南康市| 毕节市| 淮北市| 筠连县| 连城县| 嘉义县| 罗定市| 桃江县| 太保市| 静海县| 连山| 汕尾市| 舟山市| 千阳县| 永川市| 葫芦岛市| 叶城县| 诏安县| 惠州市| 滦平县| 信宜市| 宾川县| 杭锦后旗| 成都市| 伽师县| 望谟县| 阿拉尔市| 隆回县| 扶风县| 景泰县| 河北省| 武邑县| 贵溪市| 洮南市| 怀集县| 临沂市| 五莲县| 分宜县| 株洲县|