找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calibration and Parameterization Methods for the Libor Market Model; Christoph Hackl Book 2014 Springer Fachmedien Wiesbaden 2014 Forward

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 13:07:39 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:52 | 只看該作者
Karin Egberts,Angelika Gensthaler Rebonato‘s popular linear exponential parametric function, see Brigo and Mercurio [2006]. To calibrate the LMM directly to market data, the volatility curve has to be "bootstraped", as ..(.) is modeled and therefore each caplet on its own.
13#
發(fā)表于 2025-3-23 21:55:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:49:31 | 只看該作者
EntwicklungspsychopharmakologieThe first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
16#
發(fā)表于 2025-3-24 09:18:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:05 | 只看該作者
Applications and Results,The first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
18#
發(fā)表于 2025-3-24 17:09:25 | 只看該作者
Calibration and Parameterization Methods for the Libor Market Model
19#
發(fā)表于 2025-3-24 21:14:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:55 | 只看該作者
Foundations of Mathematical Finance and Stochastic Calculus,ction we start with simple interest rate necessities and go on to financial Derivatives which are necessary to understand to correctly calibrate and use the model for pricing. The section 2.2 starts with the most important aspects in stochastic calculus which is the key step to understand and work w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 综艺| 晋州市| 台东县| 临西县| 德钦县| 杨浦区| 新源县| 泰州市| 凤山市| 眉山市| 墨竹工卡县| 丹东市| 碌曲县| 浏阳市| 西畴县| 泽库县| 武陟县| 南皮县| 会理县| 南平市| 同仁县| 河间市| 方正县| 泾阳县| 天台县| 内江市| 荥经县| 清新县| 大厂| 延庆县| 舞钢市| 朔州市| 高平市| 霍州市| 延长县| 博爱县| 杨浦区| 大洼县| 宜川县| 宁陵县|