找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calibration and Parameterization Methods for the Libor Market Model; Christoph Hackl Book 2014 Springer Fachmedien Wiesbaden 2014 Forward

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 13:07:39 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:52 | 只看該作者
Karin Egberts,Angelika Gensthaler Rebonato‘s popular linear exponential parametric function, see Brigo and Mercurio [2006]. To calibrate the LMM directly to market data, the volatility curve has to be "bootstraped", as ..(.) is modeled and therefore each caplet on its own.
13#
發(fā)表于 2025-3-23 21:55:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:49:31 | 只看該作者
EntwicklungspsychopharmakologieThe first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
16#
發(fā)表于 2025-3-24 09:18:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:05 | 只看該作者
Applications and Results,The first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
18#
發(fā)表于 2025-3-24 17:09:25 | 只看該作者
Calibration and Parameterization Methods for the Libor Market Model
19#
發(fā)表于 2025-3-24 21:14:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:55 | 只看該作者
Foundations of Mathematical Finance and Stochastic Calculus,ction we start with simple interest rate necessities and go on to financial Derivatives which are necessary to understand to correctly calibrate and use the model for pricing. The section 2.2 starts with the most important aspects in stochastic calculus which is the key step to understand and work w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵璧县| 桐梓县| 类乌齐县| 措美县| 罗山县| 商水县| 石首市| 乡宁县| 大洼县| 满城县| 廉江市| 阿拉善左旗| 玉龙| 邻水| 汾阳市| 双鸭山市| 尼勒克县| 德令哈市| 黎平县| 建湖县| 延长县| 宁国市| 仙桃市| 梧州市| 塔城市| 新巴尔虎左旗| 扶绥县| 聂荣县| 施甸县| 疏勒县| 漳浦县| 宁德市| 平和县| 泰和县| 荥阳市| 田东县| 民丰县| 教育| 府谷县| 浑源县| 绥中县|