找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calibration and Parameterization Methods for the Libor Market Model; Christoph Hackl Book 2014 Springer Fachmedien Wiesbaden 2014 Forward

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 13:07:39 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:52 | 只看該作者
Karin Egberts,Angelika Gensthaler Rebonato‘s popular linear exponential parametric function, see Brigo and Mercurio [2006]. To calibrate the LMM directly to market data, the volatility curve has to be "bootstraped", as ..(.) is modeled and therefore each caplet on its own.
13#
發(fā)表于 2025-3-23 21:55:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:49:31 | 只看該作者
EntwicklungspsychopharmakologieThe first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
16#
發(fā)表于 2025-3-24 09:18:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:05 | 只看該作者
Applications and Results,The first Figure 5.1 shows the market cap volatility structure with the characteristic hump at the beginning where cubic spline interpolation has been used between the market volatility points. The dashed line is the stripped caplet volatility which is used to calibrate the libor market model for pricing caps.
18#
發(fā)表于 2025-3-24 17:09:25 | 只看該作者
Calibration and Parameterization Methods for the Libor Market Model
19#
發(fā)表于 2025-3-24 21:14:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:55 | 只看該作者
Foundations of Mathematical Finance and Stochastic Calculus,ction we start with simple interest rate necessities and go on to financial Derivatives which are necessary to understand to correctly calibrate and use the model for pricing. The section 2.2 starts with the most important aspects in stochastic calculus which is the key step to understand and work w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 恩平市| 汉沽区| 鄯善县| 碌曲县| 宜宾市| 庆安县| 武义县| 衡阳市| 游戏| 永年县| 札达县| 九寨沟县| 清丰县| 岳西县| 临潭县| 江永县| 丰原市| 杂多县| 宿州市| 长垣县| 平泉县| 孝感市| 玉溪市| 大厂| 昌宁县| 康乐县| 明光市| 长岛县| 双鸭山市| 勐海县| 古蔺县| 三穗县| 呼和浩特市| 西贡区| 三亚市| 乐亭县| 丰都县| 土默特左旗| 宁乡县| 东明县|