找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus off the Beaten Path; A Journey Through It Ignacio Zalduendo Textbook 2022 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:33:12 | 只看該作者
The Gamma Function, it is easy to see that . Γ(0) is not defined, but we may use the equality . to define Γ in the interval (?1, 0), and then in (?2, ?1), (?3, ?2)…Thus, we consider Γ defined on all real numbers except {0, ?1, ?2, ?3, …}. One value of Γ which is easy to calculate is . (see the Exercises).
12#
發(fā)表于 2025-3-23 16:06:29 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:51 | 只看該作者
14#
發(fā)表于 2025-3-24 00:59:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:42:42 | 只看該作者
More Derivatives,xample, it may happen that . exists but may not be differentiable, in which case .″ does not exist. In this chapter we will suppose that our functions are infinitely differentiable, in other words, ., .″, ….., …, exist. But now what we want to ask ourselves is: what meaning does .″ have for our func
16#
發(fā)表于 2025-3-24 09:29:20 | 只看該作者
More Integrals,n and without the area which they wanted to calculate. In the XVIIth Century Bonavantura Cavalieri (1598–1647) had an idea that was strongly criticized at the time: he considered an area as a “sum of lines” and a volume as a “sum of areas.”
17#
發(fā)表于 2025-3-24 13:59:25 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:54 | 只看該作者
https://doi.org/10.1007/978-3-031-15765-3one-variable calculus; real functions; limits; derivatives; integrals; Riemann‘s rearrangement theorem; Py
19#
發(fā)表于 2025-3-24 20:24:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:35:09 | 只看該作者
Calculus off the Beaten Path978-3-031-15765-3Series ISSN 1615-2085 Series E-ISSN 2197-4144
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 威信县| 乃东县| 杭锦后旗| 湟中县| 和硕县| 宜城市| 苍南县| 灵川县| 黑龙江省| 定安县| 松阳县| 漾濞| 驻马店市| 手机| 阿瓦提县| 阿坝县| 洞头县| 通化县| 铜陵市| 宜春市| 交口县| 紫金县| 扶沟县| 思南县| 临沧市| 富阳市| 吉木萨尔县| 横峰县| 贵德县| 罗城| 长葛市| 青铜峡市| 泰和县| 五河县| 怀仁县| 乐安县| 南京市| 夏邑县| 林口县| 金川县|