找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations; Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati

[復(fù)制鏈接]
查看: 10254|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:06:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Calculus of Variations
編輯Filip Rindler
視頻videohttp://file.papertrans.cn/221/220878/220878.mp4
概述Presents several strands of the most recent research on the calculus of variations.Builds on powerful analytical techniques such as Young measures to provide the reader with an effective toolkit for t
叢書名稱Universitext
圖書封面Titlebook: Calculus of Variations;  Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati
描述This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field...Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored...While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev
出版日期Textbook 2018
關(guān)鍵詞calculus of variations; PDE; partial differential equations; variational problem; minimization problem; E
版次1
doihttps://doi.org/10.1007/978-3-319-77637-8
isbn_softcover978-3-319-77636-1
isbn_ebook978-3-319-77637-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Calculus of Variations影響因子(影響力)




書目名稱Calculus of Variations影響因子(影響力)學(xué)科排名




書目名稱Calculus of Variations網(wǎng)絡(luò)公開度




書目名稱Calculus of Variations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Calculus of Variations被引頻次




書目名稱Calculus of Variations被引頻次學(xué)科排名




書目名稱Calculus of Variations年度引用




書目名稱Calculus of Variations年度引用學(xué)科排名




書目名稱Calculus of Variations讀者反饋




書目名稱Calculus of Variations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:49:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:30 | 只看該作者
Polyconvexity Thus, we were led to consider quasiconvex integrands. However, while quasiconvexity is of tremendous importance in the theory of the calculus of variations, our Lower Semicontinuity Theorem?. has one major drawback: we needed to require the .-growth bound
5#
發(fā)表于 2025-3-22 08:48:32 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:50 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:01 | 只看該作者
Radial Basis Function Networks,Motivated by the example on crystal microstructure in Section?. and the remarks in Section?. about the connection of the quasiconvex hull to the relaxation of integral functionals, in this chapter we continue our analysis of the differential inclusion
9#
發(fā)表于 2025-3-23 03:34:16 | 只看該作者
10#
發(fā)表于 2025-3-23 05:54:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 扶绥县| 新密市| 旬邑县| 仙游县| 饶阳县| 神池县| 新田县| 葵青区| 祁门县| 莱芜市| 乌拉特后旗| 郴州市| 德惠市| 尚义县| 临沭县| 牙克石市| 勃利县| 丰都县| 清原| 枣强县| 应城市| 久治县| 沈丘县| 高邑县| 丽江市| 香港| 湄潭县| 孝感市| 南江县| 镇坪县| 承德市| 临江市| 垣曲县| 滦南县| 化隆| 花莲县| 广平县| 阿瓦提县| 佛教| 武功县|