找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations; Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati

[復(fù)制鏈接]
查看: 10254|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:06:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Calculus of Variations
編輯Filip Rindler
視頻videohttp://file.papertrans.cn/221/220878/220878.mp4
概述Presents several strands of the most recent research on the calculus of variations.Builds on powerful analytical techniques such as Young measures to provide the reader with an effective toolkit for t
叢書名稱Universitext
圖書封面Titlebook: Calculus of Variations;  Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati
描述This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field...Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored...While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev
出版日期Textbook 2018
關(guān)鍵詞calculus of variations; PDE; partial differential equations; variational problem; minimization problem; E
版次1
doihttps://doi.org/10.1007/978-3-319-77637-8
isbn_softcover978-3-319-77636-1
isbn_ebook978-3-319-77637-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Calculus of Variations影響因子(影響力)




書目名稱Calculus of Variations影響因子(影響力)學(xué)科排名




書目名稱Calculus of Variations網(wǎng)絡(luò)公開度




書目名稱Calculus of Variations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Calculus of Variations被引頻次




書目名稱Calculus of Variations被引頻次學(xué)科排名




書目名稱Calculus of Variations年度引用




書目名稱Calculus of Variations年度引用學(xué)科排名




書目名稱Calculus of Variations讀者反饋




書目名稱Calculus of Variations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:49:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:30 | 只看該作者
Polyconvexity Thus, we were led to consider quasiconvex integrands. However, while quasiconvexity is of tremendous importance in the theory of the calculus of variations, our Lower Semicontinuity Theorem?. has one major drawback: we needed to require the .-growth bound
5#
發(fā)表于 2025-3-22 08:48:32 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:50 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:01 | 只看該作者
Radial Basis Function Networks,Motivated by the example on crystal microstructure in Section?. and the remarks in Section?. about the connection of the quasiconvex hull to the relaxation of integral functionals, in this chapter we continue our analysis of the differential inclusion
9#
發(fā)表于 2025-3-23 03:34:16 | 只看該作者
10#
發(fā)表于 2025-3-23 05:54:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵寿县| 蚌埠市| 西华县| 泸溪县| 哈尔滨市| 阿合奇县| 正安县| 克什克腾旗| 翁源县| 同德县| 仁寿县| 师宗县| 商水县| 元氏县| 南江县| 泉州市| 特克斯县| 确山县| 黔西县| 瑞昌市| 五寨县| 宝丰县| 临西县| 宿松县| 湖南省| 阳城县| 大渡口区| 定远县| 古丈县| 隆德县| 河曲县| 宁德市| 浠水县| 仲巴县| 安吉县| 东至县| 淮北市| 体育| 肃宁县| 新化县| 宁津县|