找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus I; Brian Knight,Roger Adams Book 1975 Springer Science+Business Media New York 1975 curve sketching.differential equation.integra

[復(fù)制鏈接]
樓主: 切口
41#
發(fā)表于 2025-3-28 17:32:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:39:58 | 只看該作者
Current Perspectives on Imaging LanguageThe student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
43#
發(fā)表于 2025-3-29 00:48:28 | 只看該作者
44#
發(fā)表于 2025-3-29 04:44:19 | 只看該作者
45#
發(fā)表于 2025-3-29 10:09:19 | 只看該作者
46#
發(fā)表于 2025-3-29 12:00:22 | 只看該作者
The Exponential and Related Functions,Consider the following expression for the number ..:
47#
發(fā)表于 2025-3-29 18:11:35 | 只看該作者
Inverse Functions,This function is written as sin.. and may be interpreted by:
48#
發(fā)表于 2025-3-29 22:14:40 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:44 | 只看該作者
Maxima and Minima,In the graph of the function .(.) shown in figure 7.1, there are three points at which the gradient of the tangent becomes zero—points ., and C. These points are known as ., and to find them we must solve the equation: .i.e. find the values of . for which the gradient of the curve is zero.
50#
發(fā)表于 2025-3-30 04:56:20 | 只看該作者
Expansion in Series,The student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丘北县| 大丰市| 肥乡县| 太白县| 康马县| 光泽县| 武安市| 安平县| 张家口市| 云南省| 禄丰县| 兴海县| 花垣县| 日照市| 彰武县| 剑河县| 庆安县| 咸宁市| 阿克苏市| 博白县| 太保市| 乐清市| 仙居县| 苍山县| 天等县| 清苑县| 汉沽区| 托克逊县| 辉县市| 沐川县| 泽普县| 观塘区| 介休市| 杭锦后旗| 临颍县| 宜昌市| 苍梧县| 万宁市| 巴南区| 罗定市| 潜江市|