找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus I; Brian Knight,Roger Adams Book 1975 Springer Science+Business Media New York 1975 curve sketching.differential equation.integra

[復(fù)制鏈接]
樓主: 切口
41#
發(fā)表于 2025-3-28 17:32:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:39:58 | 只看該作者
Current Perspectives on Imaging LanguageThe student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
43#
發(fā)表于 2025-3-29 00:48:28 | 只看該作者
44#
發(fā)表于 2025-3-29 04:44:19 | 只看該作者
45#
發(fā)表于 2025-3-29 10:09:19 | 只看該作者
46#
發(fā)表于 2025-3-29 12:00:22 | 只看該作者
The Exponential and Related Functions,Consider the following expression for the number ..:
47#
發(fā)表于 2025-3-29 18:11:35 | 只看該作者
Inverse Functions,This function is written as sin.. and may be interpreted by:
48#
發(fā)表于 2025-3-29 22:14:40 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:44 | 只看該作者
Maxima and Minima,In the graph of the function .(.) shown in figure 7.1, there are three points at which the gradient of the tangent becomes zero—points ., and C. These points are known as ., and to find them we must solve the equation: .i.e. find the values of . for which the gradient of the curve is zero.
50#
發(fā)表于 2025-3-30 04:56:20 | 只看該作者
Expansion in Series,The student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常熟市| 临高县| 衢州市| 汤阴县| 鸡西市| 南郑县| 彰武县| 麻江县| 淮安市| 寿宁县| 双鸭山市| 论坛| 保山市| 雷山县| 定南县| 东辽县| 温泉县| 海晏县| 江门市| 峡江县| 泾川县| 清丰县| 望都县| 台北市| 兴安县| 松原市| 綦江县| 玉环县| 伊宁县| 鄂托克前旗| 洱源县| 临朐县| 三河市| 阿拉尔市| 陆良县| 南平市| 克什克腾旗| 安顺市| 建湖县| 江永县| 道真|