找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds; Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma

[復制鏈接]
樓主: 債務人
11#
發(fā)表于 2025-3-23 10:43:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:30 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
13#
發(fā)表于 2025-3-23 20:57:54 | 只看該作者
Structures on Riemannian Manifolds,ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
14#
發(fā)表于 2025-3-23 23:28:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:15:19 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:55 | 只看該作者
Submanifolds,he ambient manifold .to simplify the notation because it may cause no confusion. Let T(M) and T(M). denote the tangent and normal bundle of M respectively. The metric g and the connection .on .lead to invariant inner products and the connections on T(M) and T(M). We will define a connection on M explicitely.
17#
發(fā)表于 2025-3-24 13:14:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:55:27 | 只看該作者
Submanifolds, of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
19#
發(fā)表于 2025-3-24 21:19:28 | 只看該作者
6樓
20#
發(fā)表于 2025-3-25 00:57:49 | 只看該作者
6樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
博乐市| 陵水| 阳山县| 河北区| 滨海县| 海晏县| 永丰县| 富宁县| 中超| 连山| 左权县| 临夏市| 红原县| 上杭县| 永福县| 蒲城县| 富民县| 株洲县| 淮安市| 会昌县| 浦北县| 西青区| 丰镇市| 琼中| 金沙县| 庆安县| 绥德县| 博乐市| 永福县| 兰州市| 鄢陵县| 永年县| 民乐县| 麟游县| 武宣县| 稷山县| 巴东县| 荣昌县| 宁南县| 汉源县| 堆龙德庆县|