找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復(fù)制鏈接]
樓主: 涌出
21#
發(fā)表于 2025-3-25 05:56:59 | 只看該作者
New Perspectives in German Political Studieses of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
22#
發(fā)表于 2025-3-25 07:52:51 | 只看該作者
23#
發(fā)表于 2025-3-25 14:04:19 | 只看該作者
Perspectives on Geographical Marginalitych satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
24#
發(fā)表于 2025-3-25 18:23:20 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduce
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
26#
發(fā)表于 2025-3-26 00:08:16 | 只看該作者
Armand Faganel,Anita Trnav?evi?. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
27#
發(fā)表于 2025-3-26 07:04:13 | 只看該作者
The principal circle bundle S2n+1(Pn(C), S1),es of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
28#
發(fā)表于 2025-3-26 10:45:09 | 只看該作者
Hypersurfaces of a Riemannian manifold of constant curvature,consider hypersurfaces of a Riemannian manifold of constant curvature. This research, combined with the results obtained in Section 10, will contribute to studying real hypersurfaces of complex projective space in Section 16.
29#
發(fā)表于 2025-3-26 14:32:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:01:59 | 只看該作者
Codimension reduction of a submanifold,her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduced from 2 to 1.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安平县| 阳朔县| 宿松县| 南召县| 宿迁市| 黄骅市| 威信县| 南漳县| 东城区| 石城县| 延安市| 铜陵市| 泸水县| 如东县| 蒙山县| 彰武县| 叙永县| 阳城县| 射洪县| 兰坪| 会东县| 分宜县| 平凉市| 肇源县| 泗水县| 尼木县| 河北区| 扶沟县| 开阳县| 平果县| 天祝| 融水| 深水埗区| 彭泽县| 喀喇沁旗| 福安市| 巴塘县| 隆昌县| 永安市| 龙游县| 深水埗区|