找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: COVID-19 Experience in the Philippines; Response, Surveillan Maria Regina Justina Estuar,Elvira De Lara-Tuprio Book 2023 The Editor(s) (if

[復(fù)制鏈接]
查看: 40132|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:02:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)COVID-19 Experience in the Philippines
副標(biāo)題Response, Surveillan
編輯Maria Regina Justina Estuar,Elvira De Lara-Tuprio
視頻videohttp://file.papertrans.cn/221/220494/220494.mp4
概述Provides a framework for designing and developing an operational disease surveillance dashboard in a health crisis.Serves as a mini-handbook or toolkit on disease modeling and surveillance.Includes so
叢書(shū)名稱(chēng)Disaster Risk Reduction
圖書(shū)封面Titlebook: COVID-19 Experience in the Philippines; Response, Surveillan Maria Regina Justina Estuar,Elvira De Lara-Tuprio Book 2023 The Editor(s) (if
描述This book provides an overview of the extensive work that has been done on the design and implementation of the COVID-19 Philippines Local Government Unit Monitoring Platform, more commonly known as Feasibility Analysis of Syndromic Surveillance Using Spatio-Temporal Epidemiological Modeler for Early Detection of Diseases (FASSSTER). The project began in 2016 as a pilot study in developing a multidimensional approach in disease modeling requiring the development of an interoperable platform to accommodate input of data from various sources including electronic medical records, various disease surveillance systems, social media, online news, and weather data. In 2020, the FASSSTER platform was reconfigured for use in the COVID-19 pandemic. Using lessons learned from the previous design and implementation of the platform toward its full adoption by the Department of Health of the Philippines, this book narrates the story of FASSSTER in two main parts..Part I provides a historical perspective of the FASSSTER platform as a modeling and disease surveillance system for dengue, measles and typhoid, followed by the origins of the FASSSTER framework and how it was reconfigured for the manag
出版日期Book 2023
關(guān)鍵詞Localized disease modeling; Disease surveillance platform; COVID-19 pandemic in the Philippines; Respon
版次1
doihttps://doi.org/10.1007/978-981-99-3153-8
isbn_softcover978-981-99-3155-2
isbn_ebook978-981-99-3153-8Series ISSN 2196-4106 Series E-ISSN 2196-4114
issn_series 2196-4106
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱(chēng)COVID-19 Experience in the Philippines影響因子(影響力)




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines被引頻次




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines被引頻次學(xué)科排名




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines年度引用




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines年度引用學(xué)科排名




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines讀者反饋




書(shū)目名稱(chēng)COVID-19 Experience in the Philippines讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:33 | 只看該作者
Yunyao Li,Dragomir Radev,Davood Rafieihe mathematical theory and model assumptions will be presented for both tools, as well as some of the corresponding outputs for selected regions. Additional analysis will also be presented to provide further insights on the meaning of ..
板凳
發(fā)表于 2025-3-22 01:14:13 | 只看該作者
Effective Reproduction Number he mathematical theory and model assumptions will be presented for both tools, as well as some of the corresponding outputs for selected regions. Additional analysis will also be presented to provide further insights on the meaning of ..
地板
發(fā)表于 2025-3-22 07:15:44 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:02 | 只看該作者
Book 2023Unit Monitoring Platform, more commonly known as Feasibility Analysis of Syndromic Surveillance Using Spatio-Temporal Epidemiological Modeler for Early Detection of Diseases (FASSSTER). The project began in 2016 as a pilot study in developing a multidimensional approach in disease modeling requiring
6#
發(fā)表于 2025-3-22 14:28:40 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:17 | 只看該作者
2196-4106 al perspective of the FASSSTER platform as a modeling and disease surveillance system for dengue, measles and typhoid, followed by the origins of the FASSSTER framework and how it was reconfigured for the manag978-981-99-3155-2978-981-99-3153-8Series ISSN 2196-4106 Series E-ISSN 2196-4114
8#
發(fā)表于 2025-3-22 23:49:08 | 只看該作者
Origins of FASSSTERcluding electronic medical records, case reports submitted by hospitals, and symptoms posted on social media. The platform was also designed for online scenario-based disease modeling, time series, and spatio-temporal forecasting using STEM (IBM, Spatiotemporal epidemiological modeler project. ., .)
9#
發(fā)表于 2025-3-23 02:16:44 | 只看該作者
Management of COVID-19 Data for the FASSSTER Platformf Philippine COVID-19 data for the FASSSTER platform. The first part discusses the data extracted from data sources, namely: COVID KAYA, DOH Data Collect, Google mobility, and other publicly available datasets. The second part describes data cleaning and imputation methods performed on the datasets.
10#
發(fā)表于 2025-3-23 07:21:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敖汉旗| 肥西县| 习水县| 叶城县| 黄石市| 鹿泉市| 车致| 宝清县| 海宁市| 讷河市| 伊金霍洛旗| 增城市| 界首市| 九龙城区| 称多县| 九寨沟县| 梅河口市| 宣化县| 屯昌县| 泸西县| 土默特左旗| 甘孜| 五莲县| 中超| 德安县| SHOW| 柳林县| 唐河县| 黑龙江省| 安溪县| 巩义市| 桑植县| 泸定县| 武威市| 克拉玛依市| 苍南县| 涿州市| 巨鹿县| 鄯善县| 中宁县| 嘉禾县|