找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: CCKS 2021 - Evaluation Track; 6th China Conference Bing Qin,Haofen Wang,Jiangtao Zhang Conference proceedings 2022 Springer Nature Singapor

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 21:04:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:53:20 | 只看該作者
33#
發(fā)表于 2025-3-27 09:17:15 | 只看該作者
Nachrichtenübertragung über Satellitenation (VTC) task. Meanwhile we propose a joint training framework for VCC task and VTC task based on adversarial perturbations strategy. In the final leaderboard, we achieved 3rd place in the competition. The source code has been at Github (.).
34#
發(fā)表于 2025-3-27 12:39:44 | 只看該作者
https://doi.org/10.1007/978-3-7091-9534-5method, which improves the event detection ability of the model. At the same time, we use voting for model ensemble, so as to effectively utilize the advantages of multiple models. Our model achieves F1 score of 69.86% on the test set of CCKS2021 general fine-grained event detection task and ranks the third place in the competition.
35#
發(fā)表于 2025-3-27 15:59:42 | 只看該作者
Zufall und lebendiges Geschehenbel entity typing. In our approach, a semi-supervised learning strategy is conducted to cope with the unlabeled data, and a multi-label loss is employed to recognize the multi-label entity. An F1-score of 0.85498 on the final testing data is achieved, which verifies the performance of our approach, and ranks the second place in the task.
36#
發(fā)表于 2025-3-27 21:27:14 | 只看該作者
Method Description for CCKS 2021 Task 3: A Classification Approach of Scholar Structured Informatioplied in academic searching. In this paper, a structured information extraction and match approach for structured scholar portrait from HTML web pages based on classification models is demonstrated in detail.
37#
發(fā)表于 2025-3-27 23:07:58 | 只看該作者
A Joint Training Framework Based on Adversarial Perturbation for Video Semantic Tags Classificationation (VTC) task. Meanwhile we propose a joint training framework for VCC task and VTC task based on adversarial perturbations strategy. In the final leaderboard, we achieved 3rd place in the competition. The source code has been at Github (.).
38#
發(fā)表于 2025-3-28 05:19:54 | 只看該作者
Data Augmentation Based on Pre-trained Language Model for Event Detection,method, which improves the event detection ability of the model. At the same time, we use voting for model ensemble, so as to effectively utilize the advantages of multiple models. Our model achieves F1 score of 69.86% on the test set of CCKS2021 general fine-grained event detection task and ranks the third place in the competition.
39#
發(fā)表于 2025-3-28 09:05:36 | 只看該作者
40#
發(fā)表于 2025-3-28 10:59:07 | 只看該作者
A Biaffine Attention-Based Approach for Event Factor Extraction,several strategies, ensemble multi models to retrieve the final predictions. Eventually our approach performs on the competition data set well with an F1-score of 0.8033 and takes the first place on the leaderboard.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特后旗| 拉孜县| 鸡西市| 博罗县| 兴文县| 留坝县| 佳木斯市| 济源市| 和政县| 通许县| 遂平县| 延津县| 江西省| 西林县| 郸城县| 那曲县| 古蔺县| 麻江县| 桂平市| 九台市| 满洲里市| 新和县| 安仁县| 敖汉旗| 丘北县| 修水县| 海晏县| 武冈市| 陕西省| 莱芜市| 德江县| 阿巴嘎旗| 祥云县| 澎湖县| 盐城市| 云安县| 老河口市| 建水县| 从化市| 建阳市| 枝江市|