找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CCKS 2021 - Evaluation Track; 6th China Conference Bing Qin,Haofen Wang,Jiangtao Zhang Conference proceedings 2022 Springer Nature Singapor

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 21:04:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:53:20 | 只看該作者
33#
發(fā)表于 2025-3-27 09:17:15 | 只看該作者
Nachrichtenübertragung über Satellitenation (VTC) task. Meanwhile we propose a joint training framework for VCC task and VTC task based on adversarial perturbations strategy. In the final leaderboard, we achieved 3rd place in the competition. The source code has been at Github (.).
34#
發(fā)表于 2025-3-27 12:39:44 | 只看該作者
https://doi.org/10.1007/978-3-7091-9534-5method, which improves the event detection ability of the model. At the same time, we use voting for model ensemble, so as to effectively utilize the advantages of multiple models. Our model achieves F1 score of 69.86% on the test set of CCKS2021 general fine-grained event detection task and ranks the third place in the competition.
35#
發(fā)表于 2025-3-27 15:59:42 | 只看該作者
Zufall und lebendiges Geschehenbel entity typing. In our approach, a semi-supervised learning strategy is conducted to cope with the unlabeled data, and a multi-label loss is employed to recognize the multi-label entity. An F1-score of 0.85498 on the final testing data is achieved, which verifies the performance of our approach, and ranks the second place in the task.
36#
發(fā)表于 2025-3-27 21:27:14 | 只看該作者
Method Description for CCKS 2021 Task 3: A Classification Approach of Scholar Structured Informatioplied in academic searching. In this paper, a structured information extraction and match approach for structured scholar portrait from HTML web pages based on classification models is demonstrated in detail.
37#
發(fā)表于 2025-3-27 23:07:58 | 只看該作者
A Joint Training Framework Based on Adversarial Perturbation for Video Semantic Tags Classificationation (VTC) task. Meanwhile we propose a joint training framework for VCC task and VTC task based on adversarial perturbations strategy. In the final leaderboard, we achieved 3rd place in the competition. The source code has been at Github (.).
38#
發(fā)表于 2025-3-28 05:19:54 | 只看該作者
Data Augmentation Based on Pre-trained Language Model for Event Detection,method, which improves the event detection ability of the model. At the same time, we use voting for model ensemble, so as to effectively utilize the advantages of multiple models. Our model achieves F1 score of 69.86% on the test set of CCKS2021 general fine-grained event detection task and ranks the third place in the competition.
39#
發(fā)表于 2025-3-28 09:05:36 | 只看該作者
40#
發(fā)表于 2025-3-28 10:59:07 | 只看該作者
A Biaffine Attention-Based Approach for Event Factor Extraction,several strategies, ensemble multi models to retrieve the final predictions. Eventually our approach performs on the competition data set well with an F1-score of 0.8033 and takes the first place on the leaderboard.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 阿坝县| 上杭县| 崇左市| 贺州市| 兰西县| 华坪县| 溧阳市| 革吉县| 丰顺县| 独山县| 肥乡县| 高州市| 铜陵市| 库尔勒市| 闽清县| 灵丘县| 且末县| 乌鲁木齐县| 于都县| 承德市| 锡林郭勒盟| 景洪市| 延寿县| 聊城市| 涿鹿县| 汝阳县| 萨迦县| 临朐县| 阳新县| 高平市| 望江县| 卢氏县| 西充县| 吉木乃县| 延川县| 余干县| 东乡族自治县| 六安市| 临高县| 灵璧县|