找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: CAT(0) Cube Complexes; An Introduction Petra Schwer Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
31#
發(fā)表于 2025-3-26 23:44:17 | 只看該作者
Introduction,ong such spaces, . cube complexes play a significant and successful role. Their metric and combinatorial structure give rise to several nice algebraic properties for groups acting geometrically, that is, properly and cocompactly, on them. The existence of such a cocompact cubulation of a group . imp
32#
發(fā)表于 2025-3-27 04:20:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:20:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:26:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:49:05 | 只看該作者
Hyperplanes and Half-Spaces,inside 2-cubes and carry themselves the structure of a . cube complexes of a smaller dimension. Each hyperplane in a . cube complex divides the complex into two disjoint half-spaces. Surprisingly the combinatorics of the relative position of the hyperplanes and half-spaces completely determines the
36#
發(fā)表于 2025-3-27 19:59:07 | 只看該作者
37#
發(fā)表于 2025-3-27 22:16:34 | 只看該作者
A Panoramic Tour,f actions on . cube complexes in analogy to similar results about actions on trees. To learn more about one of the many algebraic consequence for groups acting nicely on . cube complexes, we prove, in Sect. 7.2, that all such groups satisfy the Tits alternative. Admitting an action on a special cube
38#
發(fā)表于 2025-3-28 02:33:41 | 只看該作者
10樓
39#
發(fā)表于 2025-3-28 06:56:40 | 只看該作者
10樓
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
名山县| 道孚县| 迁西县| 云和县| 嘉义县| 盘锦市| 河东区| 金溪县| 吴桥县| 沾化县| 徐水县| 达孜县| 于都县| 阳泉市| 荣成市| 靖边县| 靖江市| 特克斯县| 曲松县| 西乌珠穆沁旗| 茶陵县| 唐海县| 涿鹿县| 织金县| 观塘区| 兴安盟| 长沙市| 大埔县| 巴青县| 陇南市| 建平县| 安溪县| 遵义市| 天柱县| 溆浦县| 城口县| 东兰县| 上思县| 井研县| 眉山市| 乐安县|