找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CAT(0) Cube Complexes; An Introduction Petra Schwer Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
31#
發(fā)表于 2025-3-26 23:44:17 | 只看該作者
Introduction,ong such spaces, . cube complexes play a significant and successful role. Their metric and combinatorial structure give rise to several nice algebraic properties for groups acting geometrically, that is, properly and cocompactly, on them. The existence of such a cocompact cubulation of a group . imp
32#
發(fā)表于 2025-3-27 04:20:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:20:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:26:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:49:05 | 只看該作者
Hyperplanes and Half-Spaces,inside 2-cubes and carry themselves the structure of a . cube complexes of a smaller dimension. Each hyperplane in a . cube complex divides the complex into two disjoint half-spaces. Surprisingly the combinatorics of the relative position of the hyperplanes and half-spaces completely determines the
36#
發(fā)表于 2025-3-27 19:59:07 | 只看該作者
37#
發(fā)表于 2025-3-27 22:16:34 | 只看該作者
A Panoramic Tour,f actions on . cube complexes in analogy to similar results about actions on trees. To learn more about one of the many algebraic consequence for groups acting nicely on . cube complexes, we prove, in Sect. 7.2, that all such groups satisfy the Tits alternative. Admitting an action on a special cube
38#
發(fā)表于 2025-3-28 02:33:41 | 只看該作者
10樓
39#
發(fā)表于 2025-3-28 06:56:40 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大理市| 萍乡市| 莱州市| 银川市| 化州市| 香格里拉县| 双鸭山市| 泗洪县| 沅陵县| 天门市| 浦江县| 河东区| 廊坊市| 德保县| 门头沟区| 梁平县| 香河县| 元谋县| 泗洪县| 阳新县| 惠水县| 海淀区| 婺源县| 时尚| 临沂市| 鲁甸县| 米泉市| 东山县| 芦山县| 贵南县| 九江市| 南涧| 富阳市| 通江县| 同仁县| 额济纳旗| 乐陵市| 剑河县| 布尔津县| 安远县| 罗定市|