找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Image Registration; 11th International W Marc Modat,Ivor Simpson,Tony C. W. Mok Conference proceedings 2024 The Editor(s) (if ap

[復(fù)制鏈接]
查看: 10803|回復(fù): 59
樓主
發(fā)表于 2025-3-21 20:07:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Biomedical Image Registration
期刊簡稱11th International W
影響因子2023Marc Modat,Ivor Simpson,Tony C. W. Mok
視頻videohttp://file.papertrans.cn/193/192707/192707.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Biomedical Image Registration; 11th International W Marc Modat,Ivor Simpson,Tony C. W. Mok Conference proceedings 2024 The Editor(s) (if ap
影響因子.This book constitutes the refereed proceedings of the 11th International Workshop on Biomedical Image Registration, WBIR 2024, held in conjunction with the 27th International conference on?Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in?Marrakesh, Morocco in October 2024...The 28 full papers presented in this book were carefully reviewed and selected from 32 submissions. These papers have been categorized under the following topical sections:?Architectures; Robustness; Atlas/ Fusion; Feature/ Similarity Learning & Efficiency..
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Biomedical Image Registration影響因子(影響力)




書目名稱Biomedical Image Registration影響因子(影響力)學(xué)科排名




書目名稱Biomedical Image Registration網(wǎng)絡(luò)公開度




書目名稱Biomedical Image Registration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biomedical Image Registration被引頻次




書目名稱Biomedical Image Registration被引頻次學(xué)科排名




書目名稱Biomedical Image Registration年度引用




書目名稱Biomedical Image Registration年度引用學(xué)科排名




書目名稱Biomedical Image Registration讀者反饋




書目名稱Biomedical Image Registration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:14 | 只看該作者
https://doi.org/10.1007/978-90-481-9679-1ccuracy and are generally fast. However, deep learning (DL) approaches are, in contrast to conventional non-deep-learning-based approaches, anatomy-specific. Recently, a universal deep registration approach, uniGradICON, has been proposed. However, uniGradICON focuses on monomodal image registration
板凳
發(fā)表于 2025-3-22 03:23:38 | 只看該作者
https://doi.org/10.1007/978-90-481-9679-1red 3D volume of the patient. Such pre-capturing volume is readily available in many important medical procedures and previous methods already used such a volume. Earlier methods that work by deforming this volume to match the projections can fail when the number of projections is very low as the al
地板
發(fā)表于 2025-3-22 07:17:58 | 只看該作者
Valentina Cuccio,Mario Grazianos employ multi-step network structures to break the large deformation into smaller ones and register them separately. However, these methods have two problems. First, they cannot effectively discriminate between hard-to-optimize large deformations and easy-to-optimize small deformations. This indist
5#
發(fā)表于 2025-3-22 12:03:46 | 只看該作者
6#
發(fā)表于 2025-3-22 16:48:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:10:28 | 只看該作者
8#
發(fā)表于 2025-3-22 23:13:29 | 只看該作者
Valentina Cuccio,Mario Grazianod this approach by replacing CNNs with Attention mechanisms, claiming enhanced performance. More recently, the rise of Mamba with selective state space models has led to MambaMorph, which substituted Attention with Mamba blocks, asserting superior registration. These developments prompt a critical q
9#
發(fā)表于 2025-3-23 03:05:57 | 只看該作者
Neural Networks, Human Time, and the Soul,cial to assess model robustness under such shifts, often accomplished using simulated domain shifts and expert annotations, e.g., landmarks. This work presents ProactiV-Reg, an annotation-free approach that utilizes a learnable image mapping: it iteratively adjusts a moving image to align with a fix
10#
發(fā)表于 2025-3-23 07:32:23 | 只看該作者
https://doi.org/10.1057/9781403937582pends on the reliability of the used similarity metric. In this work, we systematically challenge the robustness of two such popular metrics, Mutual Information and Cross-Cumulative Residual Entropy, by employing adversarial techniques from the deep learning field. Our experiments show resistance to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌都县| 云阳县| 泗阳县| 和政县| 余庆县| 恩施市| 龙井市| 长宁县| 靖宇县| 溧水县| 新沂市| 茌平县| 夹江县| 乐业县| 平南县| 宜宾市| 石台县| 东宁县| 耿马| 北京市| 白水县| 永川市| 济阳县| 娄烦县| 敦煌市| 通州市| 贵南县| 许昌市| 抚顺县| 浦县| 甘南县| 大邑县| 曲水县| 双鸭山市| 台山市| 丰原市| 西贡区| 鸡西市| 建湖县| 扶余县| 时尚|