找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (

[復制鏈接]
查看: 45360|回復: 62
樓主
發(fā)表于 2025-3-21 18:02:10 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bioinformatics Research and Applications
期刊簡稱20th International S
影響因子2023Wei Peng,Zhipeng Cai,Pavel Skums
視頻videohttp://file.papertrans.cn/193/192690/192690.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (
影響因子.This book constitutes the refereed proceedings of the 20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024, held in?Kunming, China, in July 19–21, 2024...The 93 full papers? included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications..
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Bioinformatics Research and Applications影響因子(影響力)




書目名稱Bioinformatics Research and Applications影響因子(影響力)學科排名




書目名稱Bioinformatics Research and Applications網絡公開度




書目名稱Bioinformatics Research and Applications網絡公開度學科排名




書目名稱Bioinformatics Research and Applications被引頻次




書目名稱Bioinformatics Research and Applications被引頻次學科排名




書目名稱Bioinformatics Research and Applications年度引用




書目名稱Bioinformatics Research and Applications年度引用學科排名




書目名稱Bioinformatics Research and Applications讀者反饋




書目名稱Bioinformatics Research and Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:15:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:07:01 | 只看該作者
地板
發(fā)表于 2025-3-22 08:36:39 | 只看該作者
5#
發(fā)表于 2025-3-22 09:19:45 | 只看該作者
Metallurgical Process Engineeringact and fuse key features. We validated the performance of the model on the publicly available dataset TCGA-COAD, and the experimental results demonstrated the superior ability of CovAttnNet in predicting the status of colon cancer MSI status. This study provides a new method for deep learning in marker prediction research.
6#
發(fā)表于 2025-3-22 14:24:04 | 只看該作者
,Patch-Based Coupled Attention Network to?Predict MSI Status in?Colon Cancer,act and fuse key features. We validated the performance of the model on the publicly available dataset TCGA-COAD, and the experimental results demonstrated the superior ability of CovAttnNet in predicting the status of colon cancer MSI status. This study provides a new method for deep learning in marker prediction research.
7#
發(fā)表于 2025-3-22 18:34:15 | 只看該作者
Die Theorie des Metallspritzens,ation module (LRM) for global and local features extraction, respectively, and then fuses global and local features for final classification. The experimental results show the effectiveness and potential of the proposed HM-HER2 model in the field of H &E-stained whole slide images (WSIs) classification of breast cancer.
8#
發(fā)表于 2025-3-22 21:48:49 | 只看該作者
Metallurgical Design and Industryised deep neural network is trained with cross-entropy loss and a contrastive regularization term to predict the types of the remaining cells. During this process, the labels of some cells are corrected from one cell type to another, a phenomenon that can also be elucidated from various biological perspectives.
9#
發(fā)表于 2025-3-23 02:43:48 | 只看該作者
https://doi.org/10.1007/978-3-642-13956-7ients and healthy controls. Our findings demonstrate higher classification accuracy using time-varying features compared to static brain network topology features. This study enhances our understanding of the dynamic brain network mechanisms in ASD and suggests reliable methods for early diagnosis.
10#
發(fā)表于 2025-3-23 05:56:42 | 只看該作者
,A Hybrid Feature Fusion Network for?Predicting HER2 Status on?H &E-Stained Histopathology Images,ation module (LRM) for global and local features extraction, respectively, and then fuses global and local features for final classification. The experimental results show the effectiveness and potential of the proposed HM-HER2 model in the field of H &E-stained whole slide images (WSIs) classification of breast cancer.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 06:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
车致| 连平县| 潜江市| 海口市| 法库县| 济源市| 台前县| 温泉县| 江源县| 大石桥市| 安化县| 伊川县| 德保县| 新化县| 吕梁市| 游戏| 汝州市| 新巴尔虎右旗| 新邵县| 涞源县| 兴宁市| 容城县| 登封市| 昌江| 汤阴县| 白玉县| 南澳县| 沐川县| 嫩江县| 乌鲁木齐市| 郸城县| 马关县| 新邵县| 三台县| 黄骅市| 上杭县| 乃东县| 新营市| 嘉义县| 叙永县| 陆川县|