找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 8th International Co Yaxin Bi,Anne-Laure Jousselme,Thierry Denoeux Conference proceedings 2024 T

[復(fù)制鏈接]
樓主: 桌前不可入
31#
發(fā)表于 2025-3-27 01:02:22 | 只看該作者
Steel symbol/number: DC04/1.0338,del is fit by minimizing a generalized negative log-likelihood function that accounts for both normal and censored data. Comparative experiments on two real-world datasets demonstrate the very good performance of our model as compared to the state-of-the-art.
32#
發(fā)表于 2025-3-27 03:55:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:04:54 | 只看該作者
Steel symbol/number: DC04/1.0338,ecision theory, our work builds on these connections. In our paper, we establish pointwise and uniform consistency of an . as an approximation to the true risk function via the derivation of nonasymptotic concentration bounds, and our work serves as the foundation for future investigations of the properties of the MFGF upper risk.
34#
發(fā)表于 2025-3-27 09:50:05 | 只看該作者
35#
發(fā)表于 2025-3-27 16:24:35 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:58 | 只看該作者
37#
發(fā)表于 2025-3-28 01:11:21 | 只看該作者
Incremental Belief-Peaks Evidential Clusteringation in the realm of big data remains constrained by excessive computational complexity and limited computational resources. To bridge this research gap, this paper introduces an .ncremental .vidential .lustering (IEC) method based on stream data clustering and belief-peaks, a technique that has de
38#
發(fā)表于 2025-3-28 02:30:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:16 | 只看該作者
Dempster-Shafer Credal Probabilistic Circuitsications do not fully account for epistemic uncertainty. To address this, credal probabilistic circuits were introduced, incorporating a way to manage such uncertainty. We propose a novel framework for learning the structure and parameters of credal probabilistic circuits, leveraging the Dempster-Sh
40#
發(fā)表于 2025-3-28 12:44:01 | 只看該作者
Uncertainty Quantification in?Regression Neural Networks Using Likelihood-Based Belief Functions is based on the Gaussian approximation of the likelihood function and the linearization of the network output with respect to the weights. Prediction uncertainty is described by a random fuzzy set inducing a predictive belief function. Preliminary experiments suggest that the approximations are ver
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
介休市| 谢通门县| 濮阳县| 鄂温| 贺兰县| 合肥市| 普安县| 万盛区| 兖州市| 黄梅县| 长岭县| 祁东县| 赤峰市| 泌阳县| 五常市| 灵川县| 调兵山市| 南和县| 黄浦区| 新平| 九龙坡区| 五寨县| 江安县| 平谷区| 莱芜市| 德格县| 定州市| 三门峡市| 丹江口市| 托里县| 晋江市| 华宁县| 监利县| 东乌| 静乐县| 邢台市| 长沙市| 永川市| 东明县| 蓝田县| 万源市|