找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 8th International Co Yaxin Bi,Anne-Laure Jousselme,Thierry Denoeux Conference proceedings 2024 T

[復制鏈接]
樓主: 桌前不可入
31#
發(fā)表于 2025-3-27 01:02:22 | 只看該作者
Steel symbol/number: DC04/1.0338,del is fit by minimizing a generalized negative log-likelihood function that accounts for both normal and censored data. Comparative experiments on two real-world datasets demonstrate the very good performance of our model as compared to the state-of-the-art.
32#
發(fā)表于 2025-3-27 03:55:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:04:54 | 只看該作者
Steel symbol/number: DC04/1.0338,ecision theory, our work builds on these connections. In our paper, we establish pointwise and uniform consistency of an . as an approximation to the true risk function via the derivation of nonasymptotic concentration bounds, and our work serves as the foundation for future investigations of the properties of the MFGF upper risk.
34#
發(fā)表于 2025-3-27 09:50:05 | 只看該作者
35#
發(fā)表于 2025-3-27 16:24:35 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:58 | 只看該作者
37#
發(fā)表于 2025-3-28 01:11:21 | 只看該作者
Incremental Belief-Peaks Evidential Clusteringation in the realm of big data remains constrained by excessive computational complexity and limited computational resources. To bridge this research gap, this paper introduces an .ncremental .vidential .lustering (IEC) method based on stream data clustering and belief-peaks, a technique that has de
38#
發(fā)表于 2025-3-28 02:30:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:16 | 只看該作者
Dempster-Shafer Credal Probabilistic Circuitsications do not fully account for epistemic uncertainty. To address this, credal probabilistic circuits were introduced, incorporating a way to manage such uncertainty. We propose a novel framework for learning the structure and parameters of credal probabilistic circuits, leveraging the Dempster-Sh
40#
發(fā)表于 2025-3-28 12:44:01 | 只看該作者
Uncertainty Quantification in?Regression Neural Networks Using Likelihood-Based Belief Functions is based on the Gaussian approximation of the likelihood function and the linearization of the network output with respect to the weights. Prediction uncertainty is described by a random fuzzy set inducing a predictive belief function. Preliminary experiments suggest that the approximations are ver
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
靖宇县| 黄石市| 沛县| 张家界市| 惠水县| 顺平县| 雅安市| 兴海县| 五华县| 玉树县| 新蔡县| 定西市| 富裕县| 泸溪县| 旬阳县| 偃师市| 那曲县| 和林格尔县| 鞍山市| 湘阴县| 柯坪县| 中阳县| 牡丹江市| 盐亭县| 大渡口区| 肥乡县| 庆云县| 尉氏县| 霞浦县| 长乐市| 德化县| 修武县| 邳州市| 临朐县| 桐城市| 江西省| 高平市| 彭水| 天镇县| 西藏| 靖边县|