找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
41#
發(fā)表于 2025-3-28 15:40:58 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:37 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohenerally, a curve is said to be .. if it has an r times continuously differentiate parametrization. An even more general smoothness concept is based on the continuity of higher order geometric invariants. Piecewise polynomial curves with this general smoothness can be nicely studied using a geometric interpretation of symmetric polynomials.
43#
發(fā)表于 2025-3-29 02:44:22 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
44#
發(fā)表于 2025-3-29 04:09:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:59:35 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:01 | 只看該作者
Gabriele Fischer,Katharina RuhlandSplines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear .. spline, i.e., a polygonal curve. Other examples are the piecewise cubic .. splines, as constructed in 4.5.
50#
發(fā)表于 2025-3-30 05:30:09 | 只看該作者
https://doi.org/10.1007/978-3-031-52819-4Most algorithms for curves in Bézier representation have a generalized form for splines. One of the most important spline algorithms is knot insertion. It can be used for degree elevation, the de Boor algorithm and subdivision. In particular, de Casteljau’s algorithm can be understood as a special multiple knot insertion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高淳县| 昌平区| 洞头县| 和静县| 阿尔山市| 水富县| 靖江市| 山东| 龙游县| 治县。| 长治市| 拜泉县| 右玉县| 伊通| 乾安县| 环江| 林周县| 拉萨市| 安达市| 盐山县| 措勤县| 崇左市| 如皋市| 怀安县| 百色市| 桐庐县| 和顺县| 上饶县| 宣化县| 潜江市| 巩义市| 伊春市| 信阳市| 土默特右旗| 克什克腾旗| 杭州市| 朝阳市| 宝应县| 桦甸市| 尚义县| 宝鸡市|