找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
41#
發(fā)表于 2025-3-28 15:40:58 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:37 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohenerally, a curve is said to be .. if it has an r times continuously differentiate parametrization. An even more general smoothness concept is based on the continuity of higher order geometric invariants. Piecewise polynomial curves with this general smoothness can be nicely studied using a geometric interpretation of symmetric polynomials.
43#
發(fā)表于 2025-3-29 02:44:22 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
44#
發(fā)表于 2025-3-29 04:09:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:59:35 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:01 | 只看該作者
Gabriele Fischer,Katharina RuhlandSplines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear .. spline, i.e., a polygonal curve. Other examples are the piecewise cubic .. splines, as constructed in 4.5.
50#
發(fā)表于 2025-3-30 05:30:09 | 只看該作者
https://doi.org/10.1007/978-3-031-52819-4Most algorithms for curves in Bézier representation have a generalized form for splines. One of the most important spline algorithms is knot insertion. It can be used for degree elevation, the de Boor algorithm and subdivision. In particular, de Casteljau’s algorithm can be understood as a special multiple knot insertion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼伦贝尔市| 通海县| 长宁县| 天祝| 陇川县| 中超| 峨眉山市| 双牌县| 高要市| 会泽县| 南昌县| 无为县| 平乡县| 浏阳市| 韩城市| 浮梁县| 淄博市| 班玛县| 修文县| 谢通门县| 盱眙县| 顺平县| 武鸣县| 时尚| 交口县| 蓝山县| 凤凰县| 堆龙德庆县| 新泰市| 华亭县| 定州市| 竹北市| 和龙市| 正阳县| 瑞金市| 潮州市| 衡阳县| 伊川县| 鄱阳县| 华蓥市| 临朐县|