找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Intelligence for Enterprise Internet of Things; Anandakumar Haldorai,Arulmurugan Ramu,Syed Abdul R Book 2020 Springer Nature Swit

[復制鏈接]
樓主: 誓約
21#
發(fā)表于 2025-3-25 06:26:54 | 只看該作者
Business Intelligence for Enterprise Internet of Things978-3-030-44407-5Series ISSN 2522-8595 Series E-ISSN 2522-8609
22#
發(fā)表于 2025-3-25 07:45:35 | 只看該作者
23#
發(fā)表于 2025-3-25 12:33:10 | 只看該作者
24#
發(fā)表于 2025-3-25 16:31:06 | 只看該作者
Well-Graded Families of Relations,r several other innovations. New Industrial Internet of Things (IIoT) platforms aim to solve the most complex challenge of manufacturers: consolidating all production systems into a single data model. They are used in smart cities, security and emergencies, environmental applications, energy, health
25#
發(fā)表于 2025-3-25 20:33:02 | 只看該作者
https://doi.org/10.1007/978-3-540-71697-6e generating numerous amounts of sensitive data that are being communicated over an unprotected network. The manufacturers are providing the least preferences for the device-level security due to resource-constrained properties of the IoT devices. The existing research has shown large computational
26#
發(fā)表于 2025-3-26 01:47:36 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:41 | 只看該作者
28#
發(fā)表于 2025-3-26 08:56:49 | 只看該作者
https://doi.org/10.1007/978-3-540-71697-6s. Data mining and pattern extraction are challenging with such a quickly increasing amount of data, in terms of both information and time. A promising computing trend known as Big Data can help. Big Data combines large-scale computing with machine learning techniques to build predictive analytics f
29#
發(fā)表于 2025-3-26 13:42:58 | 只看該作者
https://doi.org/10.1007/978-3-319-28489-7ext in developing a dynamic environment where IoT devices can connect and manage their resources on their own. New services are needed to progress the performance and service quality provided by the old services. Self-adaptation is essential for the IoT devices in a dynamic environment. These device
30#
發(fā)表于 2025-3-26 18:53:53 | 只看該作者
https://doi.org/10.1007/978-3-319-28489-7ectivity, energy, and memory. If the virtual machine is placed nearer to the Internet of Things nodes, it increases their efficiency by manifold. Virtual machine placement optimization is a trial and error method. Many new algorithms will be proposed and their results are tested against the desired
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安陆市| 历史| 陇南市| 台州市| 寻乌县| 蓬莱市| 兴宁市| 肇源县| 海城市| 容城县| 襄樊市| 本溪| 南丰县| 周口市| 阿城市| 治县。| 蒙山县| 新闻| 宁化县| 巴中市| 铜鼓县| 沙坪坝区| 漯河市| 专栏| 凌海市| 台中市| 铁岭市| 万安县| 甘孜县| 巧家县| 图木舒克市| 沙雅县| 鄂伦春自治旗| 资源县| 西峡县| 松江区| 红河县| 金乡县| 呼玛县| 郸城县| 自治县|