找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Intelligence and Big Data; 7th European Summer Esteban Zimányi Conference proceedings 2018 Springer Nature Switzerland AG 2018 bu

[復(fù)制鏈接]
樓主: choleric
21#
發(fā)表于 2025-3-25 06:59:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:50 | 只看該作者
978-3-319-96654-0Springer Nature Switzerland AG 2018
23#
發(fā)表于 2025-3-25 11:51:34 | 只看該作者
,Temporal Data Management – An Overview,erspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by
24#
發(fā)表于 2025-3-25 18:52:05 | 只看該作者
,Three Big Data Tools for a Data Scientist’s Toolbox, in every big data scientists’ toolbox, including approximate frequency counting of frequent items, cardinality estimation of very large sets, and fast nearest neighbor search in huge data collections.
25#
發(fā)表于 2025-3-25 20:19:41 | 只看該作者
Sebastian Müller,Christoph Gusyerspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by
26#
發(fā)表于 2025-3-26 03:09:23 | 只看該作者
Yolande Stolte,Rachael Craufurd Smith in every big data scientists’ toolbox, including approximate frequency counting of frequent items, cardinality estimation of very large sets, and fast nearest neighbor search in huge data collections.
27#
發(fā)表于 2025-3-26 04:35:56 | 只看該作者
An Introduction to Data Profiling,tadata discovery is known as data profiling. Profiling activities range from ad-hoc approaches, such as eye-balling random subsets of the data or formulating aggregation queries, to systematic inference of metadata via profiling algorithms. In this course, we will discuss the importance of data prof
28#
發(fā)表于 2025-3-26 08:27:15 | 只看該作者
29#
發(fā)表于 2025-3-26 14:35:22 | 只看該作者
30#
發(fā)表于 2025-3-26 17:55:04 | 只看該作者
Historical Graphs: Models, Storage, Processing,t corresponds to the state of the graph at the corresponding time instant. There is rich information in the history of the graph not present in just the current snapshot of the graph. In this chapter, we present logical and physical models, query types, systems and algorithms for managing historical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珲春市| 德保县| 仙游县| 芦溪县| 英德市| 攀枝花市| 汝南县| 上杭县| 宿州市| 安新县| 屯留县| 杂多县| 瓦房店市| 凤山市| 普安县| 浠水县| 霸州市| 称多县| 乌拉特前旗| 泸定县| 汝城县| 依兰县| 和政县| 新密市| 兴安盟| 鹤山市| 阿拉善右旗| 张家界市| 泾川县| 湘乡市| 贵南县| 仙居县| 万源市| 互助| 连城县| 湘潭县| 西平县| 云霄县| 永胜县| 汾阳市| 大余县|