找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Intelligence; 7th International Co Mohamed Fakir,Mohamed Baslam,Rachid El Ayachi Conference proceedings 2022 Springer Nature Switz

[復(fù)制鏈接]
查看: 35815|回復(fù): 64
樓主
發(fā)表于 2025-3-21 18:06:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Business Intelligence
期刊簡稱7th International Co
影響因子2023Mohamed Fakir,Mohamed Baslam,Rachid El Ayachi
視頻videohttp://file.papertrans.cn/193/192207/192207.mp4
學(xué)科分類Lecture Notes in Business Information Processing
圖書封面Titlebook: Business Intelligence; 7th International Co Mohamed Fakir,Mohamed Baslam,Rachid El Ayachi Conference proceedings 2022 Springer Nature Switz
影響因子.This book constitutes the proceedings of the 7th International Conference on Business Intelligence, CBI 2022, which took place in Khouribga, Morocco, during May 26-28, 2022. ..The 23 full papers included in this book were carefully reviewed and selected from a total of 68 submissions. They were organized in topical sections as follows: decision support and artificial intelligence; business intelligence and database; and optimization and dynamic programming..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Business Intelligence影響因子(影響力)




書目名稱Business Intelligence影響因子(影響力)學(xué)科排名




書目名稱Business Intelligence網(wǎng)絡(luò)公開度




書目名稱Business Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Business Intelligence被引頻次




書目名稱Business Intelligence被引頻次學(xué)科排名




書目名稱Business Intelligence年度引用




書目名稱Business Intelligence年度引用學(xué)科排名




書目名稱Business Intelligence讀者反饋




書目名稱Business Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:13:28 | 只看該作者
Decision Boundary to Improve the Sensitivity of Deep Neural Networks Modelsy decreases during standard training. However, adversarial training increases this distance, which improve the performance of our model. Our work presents a new solution to the deep neural networks sensitivity problem. We found a very strong relationship between the efficiency of the deep neural net
地板
發(fā)表于 2025-3-22 07:24:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:21:59 | 只看該作者
Deep Reinforcement Learning for?Bitcoin Tradinghieve an optimal policy. The profit reward functions and Sharpe ratio are used to assess the proposed DRL. The results of the experiments demonstrate that combining three agents is the most efficient strategy for automatic bitcoin trading.
6#
發(fā)表于 2025-3-22 13:35:08 | 只看該作者
Increasing Student Engagement in Lessons and Assessing MOOC Participants Through Artificial Intelligtudent‘s comprehension of the video‘s material. machine-generated questions performed comparably to human-generated questions when it came to judging skill and resemblance. Additionally, the findings indicate that the majority of the questions generated improve e-assessment when the new technology i
7#
發(fā)表于 2025-3-22 19:52:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:15 | 只看該作者
9#
發(fā)表于 2025-3-23 01:48:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:41:04 | 只看該作者
Alberto Del Bimbo,Pietro Pala,Enrico Vicariodoop framework to overcome the issue of long runtime of huge data sets. Also, a comparisons of the proposed model’s effectiveness with other existing models in the literature is carried out and the experimental results shown that our suggested parallel fuzzy model surpasses the baseline models by a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安化县| 绍兴县| 梨树县| 高碑店市| 武安市| 蒲城县| 仲巴县| 望江县| 凤翔县| 德庆县| 台安县| 贺兰县| 南阳市| 巍山| 驻马店市| 新安县| 九寨沟县| 赤壁市| 噶尔县| 洛南县| 南昌县| 海原县| 呼玛县| 平塘县| 西乡县| 化隆| 芦溪县| 稻城县| 迁西县| 衡南县| 黑水县| 开远市| 泽普县| 绥棱县| 阿荣旗| 扬中市| 峨山| 墨江| 电白县| 信宜市| 泸西县|