找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings, Finite Geometries and Groups; Proceedings of a Sat N.S. Narasimha Sastry Conference proceedings 2012 Springer Science+Business M

[復(fù)制鏈接]
查看: 20595|回復(fù): 48
樓主
發(fā)表于 2025-3-21 17:04:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Buildings, Finite Geometries and Groups
期刊簡(jiǎn)稱Proceedings of a Sat
影響因子2023N.S. Narasimha Sastry
視頻videohttp://file.papertrans.cn/192/191900/191900.mp4
發(fā)行地址In these articles, some of the currently very active mathematicians in the geometric, combinatorial and representation theoretic aspects of finite simple groups, Chevalley groups and their generalizat
學(xué)科分類Springer Proceedings in Mathematics
圖書(shū)封面Titlebook: Buildings, Finite Geometries and Groups; Proceedings of a Sat N.S. Narasimha Sastry Conference proceedings 2012 Springer Science+Business M
影響因子.This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups..The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas. .
Pindex Conference proceedings 2012
The information of publication is updating

書(shū)目名稱Buildings, Finite Geometries and Groups影響因子(影響力)




書(shū)目名稱Buildings, Finite Geometries and Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱Buildings, Finite Geometries and Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Buildings, Finite Geometries and Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Buildings, Finite Geometries and Groups被引頻次




書(shū)目名稱Buildings, Finite Geometries and Groups被引頻次學(xué)科排名




書(shū)目名稱Buildings, Finite Geometries and Groups年度引用




書(shū)目名稱Buildings, Finite Geometries and Groups年度引用學(xué)科排名




書(shū)目名稱Buildings, Finite Geometries and Groups讀者反饋




書(shū)目名稱Buildings, Finite Geometries and Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:30:08 | 只看該作者
Properties of a 27-Dimensional Space of Symmetric Bilinear Forms Acted on by ,,,
板凳
發(fā)表于 2025-3-22 03:49:07 | 只看該作者
,On the Geometry of Global Function Fields, the Riemann–Roch Theorem, and Finiteness Properties of ,
地板
發(fā)表于 2025-3-22 04:50:21 | 只看該作者
Some Remarks on Two-Transitive Permutation Groups as Multiplication Groups of Quasigroups,
5#
發(fā)表于 2025-3-22 08:55:37 | 只看該作者
Curve Complexes Versus Tits Buildings: Structures and Applications,
6#
發(fā)表于 2025-3-22 14:40:24 | 只看該作者
7#
發(fā)表于 2025-3-22 19:52:55 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:38 | 只看該作者
The Use of Blocking Sets in Galois Geometries and in Related Research Areas,
9#
發(fā)表于 2025-3-23 03:02:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:43:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普格县| 湘潭县| 临海市| 含山县| 正宁县| 西和县| 堆龙德庆县| 明溪县| 三台县| 拜城县| 二连浩特市| 卓尼县| 锦屏县| 剑河县| 高唐县| 南宁市| 绵阳市| 如皋市| 云林县| 盱眙县| 吉木萨尔县| 宁南县| 广饶县| 金华市| 印江| 庆云县| 兴仁县| 上饶县| 固安县| 喀什市| 盐山县| 丹阳市| 夏邑县| 陈巴尔虎旗| 大庆市| 河津市| 永新县| 清远市| 汶川县| 阿图什市| 开原市|