找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Building Dialogue POMDPs from Expert Dialogues; An end-to-end approa Hamidreza Chinaei,Brahim Chaib-draa Book 2016 The Authors 2016 Adaptiv

[復制鏈接]
查看: 50685|回復: 40
樓主
發(fā)表于 2025-3-21 17:51:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Building Dialogue POMDPs from Expert Dialogues
期刊簡稱An end-to-end approa
影響因子2023Hamidreza Chinaei,Brahim Chaib-draa
視頻videohttp://file.papertrans.cn/192/191630/191630.mp4
發(fā)行地址Provides insights on building dialogue systems to be applied in real domain.Illustrates learning dialogue POMDP model components from unannotated dialogues in a concise format.Introduces an end-to-end
學科分類SpringerBriefs in Speech Technology
圖書封面Titlebook: Building Dialogue POMDPs from Expert Dialogues; An end-to-end approa Hamidreza Chinaei,Brahim Chaib-draa Book 2016 The Authors 2016 Adaptiv
影響因子.This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach for dialogue POMDP model components. Starting from scratch, they present the state, the transition model, the observation model and then finally the reward model from unannotated and noisy dialogues. These altogether form a significant set of contributions that can potentially inspire substantial further work. This concise manuscript is written in a simple language, full of illustrative examples, figures, and tables..
Pindex Book 2016
The information of publication is updating

書目名稱Building Dialogue POMDPs from Expert Dialogues影響因子(影響力)




書目名稱Building Dialogue POMDPs from Expert Dialogues影響因子(影響力)學科排名




書目名稱Building Dialogue POMDPs from Expert Dialogues網(wǎng)絡公開度




書目名稱Building Dialogue POMDPs from Expert Dialogues網(wǎng)絡公開度學科排名




書目名稱Building Dialogue POMDPs from Expert Dialogues被引頻次




書目名稱Building Dialogue POMDPs from Expert Dialogues被引頻次學科排名




書目名稱Building Dialogue POMDPs from Expert Dialogues年度引用




書目名稱Building Dialogue POMDPs from Expert Dialogues年度引用學科排名




書目名稱Building Dialogue POMDPs from Expert Dialogues讀者反饋




書目名稱Building Dialogue POMDPs from Expert Dialogues讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:04:39 | 只看該作者
A Few Words on Topic Modeling,h try to learn the patterns inside the text by considering words as observations. In this context, latent Dirichlet allocation (LDA) is a Bayesian topic modeling approach which has useful properties particularly for practical applications?(Blei et?al.?2003). In this section, we go through LDA by fir
板凳
發(fā)表于 2025-3-22 02:23:48 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:18 | 只看該作者
Conclusions and Future Work, problem since automatic speech recognition (ASR) and natural language understanding (NLU) make errors which are the sources of uncertainty in SDSs. Moreover, the human user behavior is not completely predictable. The users may change their . during the dialog, which makes the SDS environment?stocha
5#
發(fā)表于 2025-3-22 11:35:45 | 只看該作者
https://doi.org/10.1007/978-3-319-26200-0Adaptive spoken dialogue systems; Dialogue POMDP model; POMDP for unannotated and noisy dialogues; POMD
6#
發(fā)表于 2025-3-22 13:52:25 | 只看該作者
7#
發(fā)表于 2025-3-22 20:07:26 | 只看該作者
8#
發(fā)表于 2025-3-22 23:52:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:53:24 | 只看該作者
https://doi.org/10.1007/978-3-031-14474-5h try to learn the patterns inside the text by considering words as observations. In this context, latent Dirichlet allocation (LDA) is a Bayesian topic modeling approach which has useful properties particularly for practical applications?(Blei et?al.?2003). In this section, we go through LDA by fir
10#
發(fā)表于 2025-3-23 09:02:24 | 只看該作者
Joseph S. Kozlowski,Scott A. Chamberlin. We?describe the Markov decision process (MDP) and the partially observable MDP (POMDP) frameworks, and present the well-known algorithms for solving them. In Sect.?3.2, we?introduce spoken dialog systems (SDSs). Then, we study the related work of sequential decision making in spoken dialog managem
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
肥东县| 芒康县| 东光县| 元朗区| 阿勒泰市| 唐山市| 长治市| 古田县| 米泉市| 桓仁| 吉木萨尔县| 阿拉善右旗| 安丘市| 五寨县| 大英县| 大同市| 湄潭县| 大连市| 三门县| 南充市| 盐津县| 宿州市| 邻水| 屯留县| 镇平县| 扎赉特旗| 施甸县| 桐庐县| 罗江县| 卫辉市| 和硕县| 乌拉特前旗| 七台河市| 江安县| 蒲城县| 集安市| 涟水县| 沙坪坝区| 馆陶县| 邢台县| 静乐县|