找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion, Martingales, and Stochastic Calculus; Jean-Fran?ois Le Gall Textbook 2016 Springer International Publishing Switzerland 2

[復制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 16:10:04 | 只看該作者
Filtrations and Martingales,eralize several notions introduced in the previous chapter in the framework of Brownian motion, and we provide a thorough discussion of stopping times. In a second step, we develop the theory of continuous time martingales, and, in particular, we derive regularity results for sample paths of marting
42#
發(fā)表于 2025-3-28 18:49:06 | 只看該作者
Continuous Semimartingales,gration in the next chapter. By definition, a continuous semimartingale is the sum of a continuous local martingale and a (continuous) finite variation process. In the present chapter, we study separately these two classes of processes. We start with some preliminaries about deterministic functions
43#
發(fā)表于 2025-3-29 01:44:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:16:13 | 只看該作者
General Theory of Markov Processes,a fundamental class of stochastic processes, with many applications in real life problems outside mathematics. The reason why Markov processes are so important comes from the so-called Markov property, which enables many explicit calculations that would be intractable for more general random process
45#
發(fā)表于 2025-3-29 09:30:16 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:15 | 只看該作者
Stochastic Differential Equations,initions, we provide a detailed treatment of the Lipschitz case, where strong existence and uniqueness statements hold. Still in the Lipschitz case, we show that the solution of a stochastic differential equation is a Markov process with a Feller semigroup, whose generator is a second-order differen
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
漳浦县| 沾益县| 阜城县| 长岛县| 商水县| 阳东县| 华宁县| 高平市| 合水县| 榕江县| 文化| 区。| 疏附县| 儋州市| 棋牌| 天峨县| 甘南县| 桓仁| 兴文县| 婺源县| 甘南县| 贵州省| 晋江市| 佳木斯市| 松溪县| 锡林郭勒盟| 花莲市| 五大连池市| 阳东县| 丰原市| 明光市| 绿春县| 峡江县| 铅山县| 伊吾县| 新绛县| 屏边| 沙洋县| 濉溪县| 六枝特区| 仙居县|