找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion and Stochastic Calculus; Ioannis Karatzas,Steven E. Shreve Textbook 19881st edition Springer-Verlag New York Inc. 1988 Bro

[復(fù)制鏈接]
查看: 55146|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:14:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brownian Motion and Stochastic Calculus
影響因子2023Ioannis Karatzas,Steven E. Shreve
視頻videohttp://file.papertrans.cn/192/191323/191323.mp4
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: Brownian Motion and Stochastic Calculus;  Ioannis Karatzas,Steven E. Shreve Textbook 19881st edition Springer-Verlag New York Inc. 1988 Bro
影響因子Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuous- time context. It has been our goal to write a systematic and thorough exposi- tion of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, alth
Pindex Textbook 19881st edition
The information of publication is updating

書目名稱Brownian Motion and Stochastic Calculus影響因子(影響力)




書目名稱Brownian Motion and Stochastic Calculus影響因子(影響力)學(xué)科排名




書目名稱Brownian Motion and Stochastic Calculus網(wǎng)絡(luò)公開度




書目名稱Brownian Motion and Stochastic Calculus網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brownian Motion and Stochastic Calculus被引頻次




書目名稱Brownian Motion and Stochastic Calculus被引頻次學(xué)科排名




書目名稱Brownian Motion and Stochastic Calculus年度引用




書目名稱Brownian Motion and Stochastic Calculus年度引用學(xué)科排名




書目名稱Brownian Motion and Stochastic Calculus讀者反饋




書目名稱Brownian Motion and Stochastic Calculus讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:20 | 只看該作者
地板
發(fā)表于 2025-3-22 07:53:29 | 只看該作者
5#
發(fā)表于 2025-3-22 10:01:39 | 只看該作者
Stochastic Differential Equations,ies. This endeavor is really a study of . Loosely speaking, the term . is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.
6#
發(fā)表于 2025-3-22 14:36:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:59:58 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:55 | 只看該作者
https://doi.org/10.1007/3-211-27480-4 few sections to develop this subject systematically; we instead confine our attention to a few illustrative cases of this interplay. Recent monographs on this subject are those of Doob (1984) and Durrett (1984).
9#
發(fā)表于 2025-3-23 02:56:23 | 只看該作者
10#
發(fā)表于 2025-3-23 07:28:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 鹤峰县| 阿拉善盟| 伊宁县| 荣昌县| 大田县| 伊通| 卢湾区| 阜新市| 姜堰市| 铜陵市| 明光市| 林西县| 苏尼特左旗| 两当县| 松潘县| 昭平县| 长垣县| 海门市| 察隅县| 监利县| 汾西县| 边坝县| 阆中市| 山西省| 琼结县| 嘉定区| 高唐县| 韩城市| 修水县| 阿拉尔市| 靖安县| 南溪县| 台南县| 肇东市| 河南省| 嘉鱼县| 崇仁县| 安阳市| 仙游县| 治县。|