找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Dynamics at Boundaries and Interfaces; In Physics, Chemistr Zeev Schuss Textbook 2013 Author 2013 Application to channel simulatio

[復(fù)制鏈接]
查看: 13867|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:15:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brownian Dynamics at Boundaries and Interfaces
期刊簡(jiǎn)稱In Physics, Chemistr
影響因子2023Zeev Schuss
視頻videohttp://file.papertrans.cn/192/191318/191318.mp4
發(fā)行地址Written in an accessible, easy to read manner without detailed rigorous proofs.Lots of examples and exercises throughout the book.Written from the scientists point of view with deep insight into sever
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Brownian Dynamics at Boundaries and Interfaces; In Physics, Chemistr Zeev Schuss Textbook 2013 Author 2013 Application to channel simulatio
影響因子Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein’s and Langevin’s theories of Brownian motion could predict..This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit
Pindex Textbook 2013
The information of publication is updating

書目名稱Brownian Dynamics at Boundaries and Interfaces影響因子(影響力)




書目名稱Brownian Dynamics at Boundaries and Interfaces影響因子(影響力)學(xué)科排名




書目名稱Brownian Dynamics at Boundaries and Interfaces網(wǎng)絡(luò)公開度




書目名稱Brownian Dynamics at Boundaries and Interfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brownian Dynamics at Boundaries and Interfaces被引頻次




書目名稱Brownian Dynamics at Boundaries and Interfaces被引頻次學(xué)科排名




書目名稱Brownian Dynamics at Boundaries and Interfaces年度引用




書目名稱Brownian Dynamics at Boundaries and Interfaces年度引用學(xué)科排名




書目名稱Brownian Dynamics at Boundaries and Interfaces讀者反饋




書目名稱Brownian Dynamics at Boundaries and Interfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:43:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:48:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:12:34 | 只看該作者
https://doi.org/10.1007/978-3-642-91812-4n of ions in a given (small) volume in solution: simulated ionic trajectories have to enter and leave the simulation domain an unbounded number of times as the step size of the simulation decreases, leaving no room for determining the convergence of the simulation. Quoting Einstein (.) in this conte
6#
發(fā)表于 2025-3-22 14:03:38 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:45 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:18 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:38 | 只看該作者
Zeitliche Entwicklung des FortschrittsThe NET problem in three dimensions is more complicated than that in two dimension, primarily because the singularity of Neumann’s function for a regular domain is more complicated than (7.1).
10#
發(fā)表于 2025-3-23 09:23:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 革吉县| 偏关县| 新疆| 扬中市| 大邑县| 广南县| 霸州市| 沽源县| 乾安县| 集安市| 浑源县| 辽阳市| 淮安市| 新竹县| 遵义县| 平南县| 遂宁市| 化州市| 霸州市| 随州市| 唐海县| 巴中市| 修水县| 拉萨市| 会昌县| 屏东市| 林甸县| 麟游县| 平和县| 且末县| 丹阳市| 汝南县| 同德县| 侯马市| 新晃| 东光县| 洛南县| 兴城市| 牡丹江市| 平阳县|