找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Broadening the Scope of Research on Mathematical Problem Solving; A Focus on Technolog Nélia Amado,Susana Carreira,Keith Jones Book 2018 Sp

[復(fù)制鏈接]
樓主: retort
11#
發(fā)表于 2025-3-23 09:46:38 | 只看該作者
12#
發(fā)表于 2025-3-23 13:53:58 | 只看該作者
Creativity and Problem Solving with Early Childhood Future Teachersation Program, focusing on creativity issues. The results of some professional tasks were discussed in order to identify initial content knowledge, noticing the perspective of creativity traits observed by future teachers when they analyse early childhood arithmetic problem-solving situations for th
13#
發(fā)表于 2025-3-23 18:54:55 | 只看該作者
Stimulating Mathematical Creativity through Constraints in Problem-Solvingmulated by providing open-ended mathematical tasks. Not only that, it is also argued that openness of problems is more conducive to students’ mathematical creativity compared to using closed tasks. In this chapter we examine this assumption and make a case for ‘constraints-based’ task design. In thi
14#
發(fā)表于 2025-3-23 23:59:33 | 只看該作者
Linking Mathematical Creativity to Problem Solving: Views from the Fieldrly concerned with their opinions as to the role creativity plays in mathematics education, how creativity can be and is promoted, and if the promotion of creativity is valid for all mathematics students. To address these issues, we review the literature on mathematical creativity. Due to its comple
15#
發(fā)表于 2025-3-24 05:40:24 | 只看該作者
Problem-Solving and Mathematical Research Projects: Creative Processes, Actions, and Mediationsign and development of a Mathematical Research Project (MRP) for teaching. It examines the output and development of the modalities of mediations during processes of instrumental genesis working from problem-solving tasks (PST) to arrive at Mathematical Research Projects (MRPs). We will respond to t
16#
發(fā)表于 2025-3-24 10:10:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:25:23 | 只看該作者
18#
發(fā)表于 2025-3-24 15:53:48 | 只看該作者
Nélia Amado,Susana Carreira,Keith JonesBroadens the scope of research on mathematical problem solving.Presents the latest research on technology, creativity, and affect in mathematical problem solving.Gathers together contributions from th
19#
發(fā)表于 2025-3-24 19:27:47 | 只看該作者
20#
發(fā)表于 2025-3-24 23:33:29 | 只看該作者
https://doi.org/10.1007/978-4-431-67044-5 to embrace innovative ways of thinking and working, mathematical problem-solving in school classrooms is being challenged by the increasingly widespread use of digital technologies, the promotion of creativity, and the recognition of the affective and aesthetic dimensions. As an introduction to thi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
恩平市| 乌苏市| 扬中市| 阳西县| 东山县| 江陵县| 万山特区| 永年县| 新巴尔虎右旗| 喀喇沁旗| 长武县| 商洛市| 涪陵区| 五河县| 襄汾县| 中西区| 洞口县| 安庆市| 出国| 宝兴县| 东宁县| 白银市| 临武县| 怀来县| 海宁市| 晴隆县| 抚宁县| 阳曲县| 武城县| 册亨县| 洛南县| 印江| 榆树市| 安达市| 陆川县| 芦山县| 石棉县| 湖北省| 炎陵县| 驻马店市| 项城市|