找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brauer Groups and Obstruction Problems; Moduli Spaces and Ar Asher Auel,Brendan Hassett,Bianca Viray Book 2017 Springer International Publi

[復(fù)制鏈接]
樓主: 信賴
11#
發(fā)表于 2025-3-23 11:15:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:05:27 | 只看該作者
Ferrimagnetic Properties of MagnetiteWe study K3 surfaces over non-closed fields and relate the notion of derived equivalence to arithmetic problems.
14#
發(fā)表于 2025-3-24 00:29:34 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:29 | 只看該作者
Thermomechanics of Ferromagnetic Bodies,Let . be the function field of a smooth projective surface . over a finite field .. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in . by elements in ..
16#
發(fā)表于 2025-3-24 07:02:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:28 | 只看該作者
The Brauer Group Is Not a Derived Invariant,In this short note we observe that the recent examples of derived-equivalent Calabi–Yau 3-folds with diffierent fundamental groups also have diffierent Brauer groups, using a little topological K-theory.
18#
發(fā)表于 2025-3-24 17:23:20 | 只看該作者
Twisted Derived Equivalences for Affine Schemes,We show how work of Rickard and To?n completely resolves the question of when two twisted affine schemes are derived equivalent.
19#
發(fā)表于 2025-3-24 21:48:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:14 | 只看該作者
Universal Unramified Cohomology of Cubic Fourfolds Containing a Plane,We prove the universal triviality of the third unramified cohomology group of a very general complex cubic fourfold containing a plane. The proof uses results on the unramified cohomology of quadrics due to Kahn, Rost, and Sujatha.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大英县| 贵州省| 县级市| 陕西省| 建瓯市| 木兰县| 水富县| 宁晋县| 云安县| 延庆县| 九江县| 内乡县| 寻乌县| 栾川县| 宁化县| 屯留县| 无极县| 鄯善县| 连州市| 玉山县| 曲靖市| 新乡县| 万荣县| 乃东县| 洛宁县| 德庆县| 彰化市| 灯塔市| 平凉市| 淳安县| 宁南县| 河东区| 长治县| 郧西县| 嘉义市| 沾益县| 田林县| 施甸县| 衡南县| 肇庆市| 鹿邑县|