找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Branching Random Walks; école d‘été de Proba Zhan Shi Book 2015 Springer International Publishing Switzerland 2015 60J80,60J85,60G50 60K37.

[復制鏈接]
樓主: CLIP
21#
發(fā)表于 2025-3-25 04:38:00 | 只看該作者
Plasma Magnetic Control Probleme goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already familiar with any form of the spinal decomposition theorem, this chapter can be skipped.
22#
發(fā)表于 2025-3-25 10:37:21 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:30 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
Branching Random Walks with Selection,roof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devoted to a few models of branching random walks in presence of certain selection criteria.
25#
發(fā)表于 2025-3-25 20:27:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:34 | 只看該作者
https://doi.org/10.1007/978-1-84800-324-8ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
27#
發(fā)表于 2025-3-26 07:51:15 | 只看該作者
The Spinal Decomposition Theorem,ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
28#
發(fā)表于 2025-3-26 10:55:23 | 只看該作者
Book 2015positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees..
29#
發(fā)表于 2025-3-26 15:45:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:16 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 07:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平昌县| 浏阳市| 邵阳市| 绍兴县| 昭通市| 佛教| 丹寨县| 礼泉县| 葵青区| 方城县| 呼玛县| 浏阳市| 铜鼓县| 新巴尔虎右旗| 天台县| 双鸭山市| 张家口市| 温泉县| 华池县| 宁明县| 绥棱县| 泰和县| 安平县| 余姚市| 哈密市| 嘉鱼县| 南投县| 潍坊市| 曲松县| 海林市| 开阳县| 海兴县| 鲁山县| 云龙县| 张北县| 罗山县| 庆安县| 卢湾区| 浑源县| 龙岩市| 龙州县|