找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Branching Processes and Their Applications; Inés M. del Puerto,Miguel González,Alfonso Ramos Book 2016 Springer International Publishing S

[復制鏈接]
樓主: solidity
41#
發(fā)表于 2025-3-28 18:01:53 | 只看該作者
42#
發(fā)表于 2025-3-28 21:31:42 | 只看該作者
Coalescence in Branching Processesng without replacement. Trace their lines of descent back in time till they meet. Call that generation ... In this paper we present results on the exact distribution of .. and its limit as . goes to infinity for the single type discrete case. We consider four cases: explosive (mean infinity), superc
43#
發(fā)表于 2025-3-28 23:47:54 | 只看該作者
44#
發(fā)表于 2025-3-29 05:45:33 | 只看該作者
Some Asymptotic Results for Strongly Critical Branching Processes with Immigration in Varying Enviroes to 1 fast enough. Under natural assumptions a diffusion approximation is derived when either the offspring or the immigration variances are strictly positive. In the case of asymptotically vanishing offspring variances a fluctuation limit theorem is proved.
45#
發(fā)表于 2025-3-29 10:13:14 | 只看該作者
46#
發(fā)表于 2025-3-29 13:08:11 | 只看該作者
47#
發(fā)表于 2025-3-29 15:47:37 | 只看該作者
Supercritical Sevastyanov Branching Processes with Non-homogeneous Poisson Immigrationn is allowed at random time points described by a time-homogeneous Poisson process. In the present paper, we study a model generalized this process along two directions: Sevastyanov’s (Theory Probab Appl 9:577–594, 1964) age-dependent branching process and time-nonhomogeneous Poisson immigration. Th
48#
發(fā)表于 2025-3-29 20:07:52 | 只看該作者
Crump-Mode-Jagers Branching Process: A Numerical Approachexpected future population age structure a large amount of renewal equations must be solved. This paper presents a numerical approach for projecting the population age structure and solving these renewal equations based on the theory of General Branching Processes. It is shown that the Leslie matrix
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
朝阳县| 临桂县| 同江市| 庆阳市| 黄骅市| 论坛| 柘城县| 江津市| 汉中市| 仙居县| 临泉县| 明光市| 陵川县| 桐庐县| 岳阳县| 常德市| 台北县| 天柱县| 临朐县| 农安县| 墨竹工卡县| 衡阳县| 定南县| 蓝田县| 德兴市| 五常市| 平安县| 舞阳县| 平邑县| 陇川县| 炎陵县| 桦甸市| 萍乡市| 繁昌县| 蒲城县| 西乌珠穆沁旗| 洪洞县| 南充市| 洛阳市| 台山市| 抚松县|