找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Branching Processes; Proceedings of the F C. C. Heyde Conference proceedings 1995 Springer-Verlag New York, Inc. 1995 Branching process.Bro

[復制鏈接]
樓主: 不足木
41#
發(fā)表于 2025-3-28 15:26:22 | 只看該作者
https://doi.org/10.1007/978-94-009-0057-8. is an asymptotic quasilikelihood estimator (AQL) of θ. Various extensions are considered: controlled branching in random environments, non i.i.d. (α.) and the case ., for which . is a consistent and an AQL estimator for θ.
42#
發(fā)表于 2025-3-28 19:03:09 | 只看該作者
7.2.1.5.1 General introduction,coresponding processes stopped at zero are studied in the critical case and the asymptotic behaviour of the non-extinction probability is obtained (depending on the range of an extra critical parameter).
43#
發(fā)表于 2025-3-28 23:38:17 | 只看該作者
7.2.1.5.1 General introduction,as a two-type decomposable branching process with time-dependent immigration. Some limit theorems are proved for the number of particles, when reproduction processes are critical and intensities of the number of “immigrants” are decreasing.
44#
發(fā)表于 2025-3-29 05:13:27 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:46 | 只看該作者
Supercritical Branching Processes: A Unified Approachmodels considered include the Galton-Watson and the general age-dependent both in the simple and multitype case as well as in the varying and random environment settings. A martingale derived from a weakly convergent subsequence is essential in the proofs.
46#
發(fā)表于 2025-3-29 15:06:47 | 只看該作者
On the Statistics of Controlled Branching Processes. is an asymptotic quasilikelihood estimator (AQL) of θ. Various extensions are considered: controlled branching in random environments, non i.i.d. (α.) and the case ., for which . is a consistent and an AQL estimator for θ.
47#
發(fā)表于 2025-3-29 16:39:14 | 只看該作者
Critical Branching Processes with Random Migrationcoresponding processes stopped at zero are studied in the critical case and the asymptotic behaviour of the non-extinction probability is obtained (depending on the range of an extra critical parameter).
48#
發(fā)表于 2025-3-29 23:30:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:12:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:14:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
唐河县| 会理县| 蕉岭县| 石河子市| 乳源| 左云县| 宁德市| 咸阳市| 自治县| 安丘市| 鄂尔多斯市| 宜阳县| 四平市| 右玉县| 梁山县| 宽城| 芦山县| 运城市| 渝北区| 甘孜| 宜黄县| 白水县| 体育| 朝阳县| 会同县| 布拖县| 深水埗区| 卓资县| 合江县| 新源县| 辽宁省| 平舆县| 加查县| 阜康市| 综艺| 霸州市| 于都县| 安化县| 广元市| 陇川县| 永登县|