找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries; 8th International Wo Spyridon Bakas,Alessandro Crimi,Reuben Dor

[復(fù)制鏈接]
查看: 33111|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:34:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries
期刊簡稱8th International Wo
影響因子2023Spyridon Bakas,Alessandro Crimi,Reuben Dorent
視頻videohttp://file.papertrans.cn/191/190329/190329.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries; 8th International Wo Spyridon Bakas,Alessandro Crimi,Reuben Dor
影響因子This book constitutes the refereed proceedings of the 8th International MICCAI Brainlesion Workshop, BrainLes 2022, as well as the Brain Tumor Segmentation (BraTS) Challenge, the Brain Tumor Sequence Registration (BraTS-Reg) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the Federated Tumor Segmentation (FeTS) Challenge. These were held jointly at the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2022, in September 2022. The 46 revised full papers presented in these volumes were selected form 65 submissions.The presented contributions describe the research of computational scientists and clinical researchers working on brain lesions - specifically glioma, multiple sclerosis, cerebral stroke, traumatic brain injuries, vestibular schwannoma, and white matter hyper-intensities of presumed vascular origin.?.
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries被引頻次




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries年度引用




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:51 | 只看該作者
Unsupervised Anomaly Localization with?Structural Feature-Autoencodersaining. Most commonly, the anomaly detection model generates a “normal” version of an input image, and the pixel-wise .-difference of the two is used to localize anomalies. However, large residuals often occur due to imperfect reconstruction of the complex anatomical structures present in most medic
板凳
發(fā)表于 2025-3-22 03:21:18 | 只看該作者
Transformer Based Models for?Unsupervised Anomaly Segmentation in?Brain MR Imagesecursor to both diagnostic and therapeutic procedures. Advances in machine learning (ML) aim to increase diagnostic efficiency by replacing a single application with generalized algorithms. The goal of unsupervised anomaly detection (UAD) is to identify potential anomalous regions unseen during trai
地板
發(fā)表于 2025-3-22 07:52:31 | 只看該作者
Weighting Schemes for?Federated Learning in?Heterogeneous and?Imbalanced Segmentation Datasetsodel weights. Two central problems arise when sending the updated weights to the central node in a federation: the imbalance of the datasets and data heterogeneity caused by differences in scanners or acquisition protocols. In this paper, we benchmark the federated average algorithm and adapt two we
5#
發(fā)表于 2025-3-22 09:38:00 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:23 | 只看該作者
Probabilistic Tissue Mapping for?Tumor Segmentation and?Infiltration Detection of?Gliomand-truth manual delineations, one could argue that the binary nature of these labels does not properly reflect the underlying biology, nor does it account for uncertainties in the predicted segmentations. Moreover, the tumor infiltration beyond the contrast-enhanced lesion – visually imperceptible o
8#
發(fā)表于 2025-3-22 22:07:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:22:07 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:18 | 只看該作者
Semi-supervised Intracranial Aneurysm Segmentation with?Selected Unlabeled Dataf up to one-third. Therefore, the diagnosis of intracranial aneurysms is of great significance. The widespread use of advanced imaging techniques, such as computed tomography angiography?(CTA) and magnetic resonance angiography?(MRA), has made it possible to diagnose intracranial aneurysms at an ear
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永善县| 图片| 沙湾县| 安康市| 方城县| 永宁县| 凉城县| 瑞安市| 平舆县| 祥云县| 玉门市| 多伦县| 淳化县| 沙河市| 郎溪县| 靖宇县| 鹿泉市| 仲巴县| 中江县| 徐闻县| 临武县| 莱西市| 玛纳斯县| 凤山县| 望江县| 三穗县| 九江市| 美姑县| 上犹县| 曲靖市| 政和县| 边坝县| 嘉定区| 偃师市| 浪卡子县| 道孚县| 大冶市| 定南县| 藁城市| 龙胜| 玉屏|