找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 7th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Covenant
31#
發(fā)表于 2025-3-26 21:24:01 | 只看該作者
Abdul Ghafar Ismail,Zuriyati Ahmadmentation performance. COTRNet achieved dice scores of ., ., and . in the enhancing tumor, the tumor core, and the whole tumor segmentation on brain tumor segmentation challenge 2021. Experimental results demonstrated effectiveness of the proposed method.
32#
發(fā)表于 2025-3-27 05:08:57 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:16 | 只看該作者
CA-Net: Collaborative Attention Network for?Multi-modal Diagnosis of?Gliomasentary information from the other modality. The cross attention matrixes imply the feature reliability, so they are further utilized to obtain a coefficient for each modality to linearly fuse the enhanced features as the final representation in the attention fusion module. The three attention module
34#
發(fā)表于 2025-3-27 12:35:56 | 只看該作者
Small Lesion Segmentation in?Brain MRIs with?Subpixel EmbeddingTo obtain the output at the original scale, we propose a learnable downsampler (as opposed to hand-crafted ones e.g. bilinear) that combines subpixel predictions. Our approach improves the baseline architecture by .11.7% and achieves the state of the art on the ATLAS public benchmark dataset with a
35#
發(fā)表于 2025-3-27 17:06:28 | 只看該作者
Unsupervised Multimodal Supervoxel Merging Towards Brain Tumor Segmentationategy produces high-quality clustering results useful for brain tumor segmentation. Indeed, our method reaches an ASA score of 0.712 compared to 0.316 for the monomodal approach, indicating that the supervoxels accommodate well tumor boundaries. Our approach also improves by 11.5% the Global Score (
36#
發(fā)表于 2025-3-27 20:12:36 | 只看該作者
Modeling Multi-annotator Uncertainty as?Multi-class Segmentation ProblemQ (Quantification of Uncertainties in Biomedical Image Quantification) challenges. We achieved high quality segmentation results, despite a small set of training samples, and at time of this writing achieved an overall third and sixth best result on the respective QUBIQ 2020 and 2021 challenge leade
37#
發(fā)表于 2025-3-27 23:20:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:39:06 | 只看該作者
Predicting Isocitrate Dehydrogenase Mutation Status in?Glioma Using Structural Brain Networks and?Grwork template of healthy subjects, consisting of atlases of edges (white matter tracts) and nodes (cortical/subcortical brain regions) to provide regions of interest (ROIs). Next, we employ autoencoders to extract the latent multi-modal MRI features from the ROIs of edges and nodes in patients, to t
39#
發(fā)表于 2025-3-28 06:23:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:48:37 | 只看該作者
Reciprocal Adversarial Learning for?Brain Tumor Segmentation: A Solution to?BraTS Challenge 2021 Seg for the enhancing tumor, whole tumor and tumor core, respectively. Similarly, our approach achieved a Dice Similarity Score of 84.55%, 90.46% and 85.30%, as well as Hausdorff Distance (95%) of 13.48?mm, 6.32?mm and 16.98?mm on the final test dataset. Overall, our proposed approach yielded better pe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 静安区| 福安市| 越西县| 盐亭县| 毕节市| 阿鲁科尔沁旗| 天等县| 西青区| 铜鼓县| 祥云县| 永寿县| 六枝特区| 阿拉善盟| 大丰市| 霍州市| 塘沽区| 雅安市| 巩留县| 来宾市| 余姚市| 略阳县| 闽侯县| 清涧县| 灯塔市| 陕西省| 株洲市| 乳源| 海南省| 富源县| 台东市| 江西省| 东莞市| 都兰县| 平定县| 潢川县| 揭西县| 天峨县| 江津市| 西畴县| 武定县|