找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Third International Alessandro Crimi,Spyridon Bakas,Mauricio

[復(fù)制鏈接]
樓主: 面臨
41#
發(fā)表于 2025-3-28 15:18:07 | 只看該作者
42#
發(fā)表于 2025-3-28 19:23:42 | 只看該作者
Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation Using?Holistic Convolutioused as a loss function for training convolutional neural networks (CNN). Although CNNs trained using mean-class Dice score achieve state-of-the-art results on multi-class segmentation, this loss function does neither take advantage of inter-class relationships nor multi-scale information. We argue
43#
發(fā)表于 2025-3-28 23:09:45 | 只看該作者
Overall Survival Time Prediction for High Grade Gliomas Based on Sparse Representation Framework imaging-based survival prediction generally relies on some features guided by clinical experiences, which limits the full utilization of biomedical image. In this paper, we propose a sparse representation-based radiomics framework to predict overall survival (OS) time of HGG. Firstly, we develop a
44#
發(fā)表于 2025-3-29 04:57:34 | 只看該作者
45#
發(fā)表于 2025-3-29 10:16:37 | 只看該作者
Pairwise, Ordinal Outlier Detection of?Traumatic Brain Injuriesa model is challenging to construct. Instead, we utilize region-specific pairwise (person-to-person) comparisons. Each person-region is characterized by a distribution of Fractional Anisotropy and comparisons are made via Median, Mean, Bhattacharya and Kullback-Liebler distances. Additionally, we ex
46#
發(fā)表于 2025-3-29 14:47:46 | 只看該作者
47#
發(fā)表于 2025-3-29 15:53:18 | 只看該作者
48#
發(fā)表于 2025-3-29 23:45:45 | 只看該作者
Deep Learning Based Multimodal Brain Tumor Diagnosisto address the challenges of multimodal brain tumor segmentation. The proposed multi-view deep learning framework (MvNet) uses three multi-branch fully-convolutional residual networks (Mb-FCRN) to segment multimodal brain images from different view-point, i.e. slices along x, y, z axis. The three su
49#
發(fā)表于 2025-3-30 01:53:31 | 只看該作者
Multimodal Brain Tumor Segmentation Using Ensemble of Forest Methodngle forest, we proposed two stage ensemble method for Multimodal Brain Tumor Segmentation problem. Identification of Tumor region and its sub-regions poses challenge in terms of variations in intensity, location etc. from patient to patient. We identify the initial region of interest (ROI) by linea
50#
發(fā)表于 2025-3-30 07:53:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 休宁县| 南皮县| 南丹县| 乌什县| 独山县| 南开区| 株洲市| 汪清县| 达孜县| 青阳县| 获嘉县| 东乡| 普兰县| 安达市| 兖州市| 张家港市| 治多县| 运城市| 杭州市| 龙陵县| 清涧县| 宿松县| 襄城县| 凌云县| 左贡县| 抚州市| 鹤壁市| 甘德县| 义乌市| 黄梅县| 山阳县| 镇雄县| 凌海市| 景泰县| 塘沽区| 邹城市| 睢宁县| 德兴市| 宁德市| 象州县|