找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: 遠(yuǎn)見
41#
發(fā)表于 2025-3-28 14:50:05 | 只看該作者
Glioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processingork’s prediction and the raw image features to estimate the posterior distribution (the tumor contour) using energy function minimization..The proposed methods are evaluated within the framework of the BRATS 2020 challenge. Measured on the test dataset the mean dice scores of the whole tumor (WT), t
42#
發(fā)表于 2025-3-28 21:18:58 | 只看該作者
Brain Tumor Segmentation and Associated Uncertainty Evaluation Using Multi-sequences MRI Mixture Dat associated uncertainty evaluation performance..Proposed in this paper method also demonstrates strong improvement on the segmentation problem. This conclusion was done with respect to Dice metric, Sensitivity and Specificity compare to identical training/validation procedure based only on any singl
43#
發(fā)表于 2025-3-28 23:04:54 | 只看該作者
Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fns. In this study, radiomic and image-based features were fused to predict the OS time of patients. Experimental results on BraTS 2020 testing dataset achieved a dice score of 0.79 on Enhancing Tumor (ET), 0.87 on Whole Tumor (WT), and 0.83 on Tumor Core (TC). For OS prediction task, results on BraT
44#
發(fā)表于 2025-3-29 03:07:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:40:00 | 只看該作者
Conference proceedings 2021es 2020, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, and the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge. These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervent
46#
發(fā)表于 2025-3-29 14:34:45 | 只看該作者
https://doi.org/10.1007/978-1-4899-2809-226.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor core, respectively. Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
47#
發(fā)表于 2025-3-29 18:29:04 | 只看該作者
48#
發(fā)表于 2025-3-29 20:20:06 | 只看該作者
https://doi.org/10.1007/978-1-4684-6042-1cing tumor, whole tumor and tumor core respectively on the training dataset. The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.
49#
發(fā)表于 2025-3-30 00:29:38 | 只看該作者
https://doi.org/10.1007/978-1-4684-6042-1t sets. In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32?mm, 22.32?mm and 20.44?mm for the whole tumor, core tumor and enhanced tumor, respectively.
50#
發(fā)表于 2025-3-30 07:17:00 | 只看該作者
H,NF-Net for Brain Tumor Segmentation Using Multimodal MR Imaging: 2nd Place Solution to BraTS Chall26.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor core, respectively. Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
百色市| 东安县| 邢台县| 万载县| 葵青区| 定州市| 会理县| 新野县| 永和县| 岳普湖县| 庄浪县| 漯河市| 通河县| 嵩明县| 信丰县| 元朗区| 遂昌县| 富平县| 庆云县| 曲麻莱县| 福泉市| 铁岭市| 长寿区| 太原市| 卢氏县| 县级市| 肇东市| 贵港市| 大化| 延寿县| 金溪县| 井研县| 奎屯市| 靖宇县| 鄢陵县| 开封市| 玛沁县| 成安县| 大连市| 兖州市| 资兴市|