找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: 遠(yuǎn)見
41#
發(fā)表于 2025-3-28 14:50:05 | 只看該作者
Glioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processingork’s prediction and the raw image features to estimate the posterior distribution (the tumor contour) using energy function minimization..The proposed methods are evaluated within the framework of the BRATS 2020 challenge. Measured on the test dataset the mean dice scores of the whole tumor (WT), t
42#
發(fā)表于 2025-3-28 21:18:58 | 只看該作者
Brain Tumor Segmentation and Associated Uncertainty Evaluation Using Multi-sequences MRI Mixture Dat associated uncertainty evaluation performance..Proposed in this paper method also demonstrates strong improvement on the segmentation problem. This conclusion was done with respect to Dice metric, Sensitivity and Specificity compare to identical training/validation procedure based only on any singl
43#
發(fā)表于 2025-3-28 23:04:54 | 只看該作者
Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fns. In this study, radiomic and image-based features were fused to predict the OS time of patients. Experimental results on BraTS 2020 testing dataset achieved a dice score of 0.79 on Enhancing Tumor (ET), 0.87 on Whole Tumor (WT), and 0.83 on Tumor Core (TC). For OS prediction task, results on BraT
44#
發(fā)表于 2025-3-29 03:07:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:40:00 | 只看該作者
Conference proceedings 2021es 2020, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, and the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge. These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervent
46#
發(fā)表于 2025-3-29 14:34:45 | 只看該作者
https://doi.org/10.1007/978-1-4899-2809-226.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor core, respectively. Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
47#
發(fā)表于 2025-3-29 18:29:04 | 只看該作者
48#
發(fā)表于 2025-3-29 20:20:06 | 只看該作者
https://doi.org/10.1007/978-1-4684-6042-1cing tumor, whole tumor and tumor core respectively on the training dataset. The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.
49#
發(fā)表于 2025-3-30 00:29:38 | 只看該作者
https://doi.org/10.1007/978-1-4684-6042-1t sets. In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32?mm, 22.32?mm and 20.44?mm for the whole tumor, core tumor and enhanced tumor, respectively.
50#
發(fā)表于 2025-3-30 07:17:00 | 只看該作者
H,NF-Net for Brain Tumor Segmentation Using Multimodal MR Imaging: 2nd Place Solution to BraTS Chall26.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor core, respectively. Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁甸县| 济阳县| 榕江县| 政和县| 台湾省| 汉阴县| 边坝县| 靖安县| 洪洞县| 平和县| 九龙城区| 达州市| 凭祥市| 云梦县| 上栗县| 甘泉县| 邯郸县| 玉林市| 清徐县| 婺源县| 德昌县| 保山市| 伽师县| 汉沽区| 齐河县| 阳朔县| 余庆县| 安化县| 新余市| 衡东县| 井研县| 板桥市| 寻甸| 柏乡县| 满洲里市| 含山县| 临猗县| 教育| 凉山| 江孜县| 道孚县|