找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
查看: 34703|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:36:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
期刊簡稱6th International Wo
影響因子2023Alessandro Crimi,Spyridon Bakas
視頻videohttp://file.papertrans.cn/191/190325/190325.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen
影響因子.This two-volume set LNCS 12658 and 12659 constitutes the thoroughly refereed proceedings of the 6th International MICCAI Brainlesion Workshop, BrainLes 2020, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, and the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge. These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in Lima, Peru, in October 2020.*..The revised selected papers presented in these volumes were organized in the following topical sections: brain lesion image analysis (16 selected papers from 21 submissions); brain tumor image segmentation (69 selected papers from 75 submissions); and computational precision medicine: radiology-pathology challenge on brain tumor classification (6 selected papers from 6 submissions)...*The workshop and challenges were held virtually..
Pindex Conference proceedings 2021
The information of publication is updating

書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:10:54 | 只看該作者
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries978-3-030-72087-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
地板
發(fā)表于 2025-3-22 08:13:37 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:22 | 只看該作者
Lois T. Hunt,Margaret O. Dayhoffccurate treatment planning is key. Magnetic resonance imaging (MRI) is a widely used imaging technique for the assessment of these tumours but the large amount of data generated by them prevents rapid manual segmentation, the task of dividing visual input into tumorous and non-tumorous regions. Henc
6#
發(fā)表于 2025-3-22 14:35:51 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:19 | 只看該作者
https://doi.org/10.1007/978-3-642-60986-2 methods by implementing the U-Net model and trialing various modifications to the training and inference strategies. The trials were performed and tested on the Multimodal Brain Tumor Segmentation dataset that provides MR images of brain tumors along with manual segmentations for hundreds of subjec
8#
發(fā)表于 2025-3-22 23:10:14 | 只看該作者
Polymer-Metal Complexes in Living Systems, MRI images. Quantitative analysis of brain tumors is critical for clinical decision making. While manual segmentation is tedious, time-consuming, and subjective, this task is at the same time very challenging to automatic segmentation methods. Thanks to the powerful learning ability, convolutional
9#
發(fā)表于 2025-3-23 02:41:24 | 只看該作者
https://doi.org/10.1007/978-1-4899-2809-2et uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions and combines the predictions together as the final segmentation. We trained and evaluated our model on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 dataset. The results on the test set show that t
10#
發(fā)表于 2025-3-23 07:29:36 | 只看該作者
Radiation-Activated Polymerizationn tumour segmentation may be more compatible with current MRI acquisition protocols than 3D methods because clinical MRI is most commonly a slice-based modality. A 2D Dense-UNet segmentation model was trained on the BraTS 2020 dataset. Mean Dice values achieved on the test dataset were: 0.859 (WT),
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大荔县| 临澧县| 老河口市| 贵南县| 德保县| 尉犁县| 乌什县| 杭锦旗| 临沭县| 湖北省| 荥阳市| 穆棱市| 抚远县| 澜沧| 西昌市| 吉水县| 奈曼旗| 印江| 博罗县| 温州市| 策勒县| 东山县| 旬阳县| 广丰县| 德令哈市| 太湖县| 崇州市| 衡水市| 河东区| 漯河市| 友谊县| 宜宾县| 阳泉市| 兴业县| 靖宇县| 新田县| 涟源市| 惠东县| 佛冈县| 珠海市| 伊川县|