找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 5th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Diverticulum
31#
發(fā)表于 2025-3-27 00:47:50 | 只看該作者
Cancer Drug Discovery and Developmentdel based on imaging texture features and wavelet texture features extracted from each of the segmented components was implemented. The networks were tested on both the BraTS2019 validation and testing datasets. The segmentation networks achieved average dice-scores of 0.901, 0.844 and 0.801 for WT,
32#
發(fā)表于 2025-3-27 03:17:03 | 只看該作者
Brain Tumor Segmentation Using Attention-Based Network in 3D MRI Imagesthermore, in order to reduce false positives, a training strategy combined with a sampling strategy was proposed in our study. The segmentation performance of the proposed network was evaluated on the BraTS 2019 validation dataset and testing dataset. In the validation dataset, the dice similarity c
33#
發(fā)表于 2025-3-27 05:31:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:47:24 | 只看該作者
Improving Brain Tumor Segmentation in Multi-sequence MR Images Using Cross-Sequence MR Image Generat%, and 83.44% in the segmentation of enhancing tumor, whole tumor, and tumor score on the testing set, respectively. Our results suggest that using cross-sequence MR image generation is an effective self-supervision method that can improve the accuracy of brain tumor segmentation and the proposed Br
35#
發(fā)表于 2025-3-27 13:49:06 | 只看該作者
36#
發(fā)表于 2025-3-27 21:19:27 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:21:43 | 只看該作者
39#
發(fā)表于 2025-3-28 08:04:24 | 只看該作者
40#
發(fā)表于 2025-3-28 12:23:01 | 只看該作者
https://doi.org/10.1007/978-94-009-5205-8n this work, we explore best practices of 3D semantic segmentation, including conventional encoder-decoder architecture, as well combined loss functions, in attempt to further improve the segmentation accuracy. We evaluate the method on BraTS 2019 challenge.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔波县| 磐石市| 民和| 勃利县| 色达县| 高陵县| 拉萨市| 九江市| 台北市| 莱芜市| 巫溪县| 金溪县| 康马县| 宜宾县| 垦利县| 峨眉山市| 武冈市| 屏南县| 江油市| 古浪县| 临海市| 井陉县| 广昌县| 平潭县| 福泉市| 股票| 桦南县| 濉溪县| 三亚市| 密云县| 桐庐县| 苍溪县| 清新县| 治多县| 双江| 广平县| 白山市| 英山县| 武隆县| 湖口县| 潍坊市|